Math, asked by pathakdhirendra, 8 months ago

if sin B is equals to 1/2 then what is the value of cot b?

Answers

Answered by kasture1972
0

Step-by-step explanation:

jrhkfkt6olytkjrnftk

Answered by bvnspurnima
0

Answer:

plz mark as brain list

Step-by-step explanation:

\boxed{\rm{\orange{Given \longrightarrow }}}

Given⟶

⇢Points are P(4,3), Q(-5-1), T(2,-2)

\boxed{\rm{\red{To\:Find\longrightarrow }}}

ToFind⟶

⇢whether the given points form a triangle

\boxed{\rm{\pink{solution \longrightarrow }}}

solution⟶

⇢First we find the lengths PQ,QT,PTPQ,QT,PT

PQ=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}PQ=

(x

1

−x

2

)

2

+(y

1

−y

2

)

2

PQ=\sqrt{(4+5)^2+(3+1)^2}PQ=

(4+5)

2

+(3+1)

2

PQ=\sqrt{9^2+4^2}PQ=

9

2

+4

2

PQ=\sqrt{81+16}PQ=

81+16

\bf\,PQ=\sqrt{97}PQ=

97

QT=\sqrt{(-5-2)^2+(-1+2)^2}QT=

(−5−2)

2

+(−1+2)

2

QT=\sqrt{(-7)^2+1^2}QT=

(−7)

2

+1

2

QT=\sqrt{49+1}QT=

49+1

\bf\,QT=\sqrt{50}QT=

50

PT=\sqrt{(4-2)^2+(3+2)^2}PT=

(4−2)

2

+(3+2)

2

PT=\sqrt{2^2+5^2}PT=

2

2

+5

2

PT=\sqrt{4+25}PT=

4+25

\bf\,PT=\sqrt{29}PT=

29

\implies\bf\,PQ{\neq}QT{\neq}PT⟹PQ

=QT

=PT

∴The given points P,Q and T form a scalene triangle

\boxed{\textbf{Option (c) is corrct}}

Option (c) is corrct

Similar questions