Physics, asked by Neervineeti, 6 months ago

If sin θ =c/√c^2+d^2,
where d >0 then find the values of cos θ and tan θ. ​

Answers

Answered by anindyaadhikari13
5

SOLUTION:-

Given that,

 \sf \sin(x)  =  \frac{c}{ \sqrt{ {c}^{2} +  {d}^{2}  } }

We have to find the value of cos(x) and tan(x)

We know that,

 \sf { \sin}^{2} (x) +  { \cos}^{2} (x) = 1

 \sf \implies{ \cos} (x) =  \sqrt{1 -  { \sin }^{2}(x) }

 \sf =  \sqrt{1 -  \frac{ {c}^{2} }{ {c}^{2} +  {d}^{2}  } }

 \sf =  \sqrt{  \frac{ {c}^{2} +  {d}^{2}   -  {c}^{2} }{ {c}^{2} +  {d}^{2}  } }

 \sf =  \sqrt{ \frac{ {d}^{2} }{ {c}^{2}  +  {d}^{2} } }

 \sf =  \frac{d}{\sqrt{ {c}^{2} +  {d}^{2}  }}

Hence,

 \sf \implies \cos(x) =   \frac{d}{\sqrt{ {c}^{2} +  {d}^{2} } }

Now,

 \sf \tan(x) =  \frac{ \sin(x) }{ \cos(x) }

 \sf =  \frac{c}{\sqrt{{c}^{2} +  {d}^{2}} }  \div  \frac{d}{ \sqrt{{c}^{2} +  {d}^{2} }}

 \sf =  \frac{c}{ \sqrt{\cancel{ {c}^{2} +  {d}^{2}}} } \times  \frac{ \cancel{\sqrt{{c}^{2} +  {d}^{2}}}}{d}

 \sf =  \frac{c}{d}

Answer:-

 \sf  \cos(x) =   \frac{d}{\sqrt{ {c}^{2} +  {d}^{2} } }

 \sf  \tan(x) =  \frac{c}{d}

Similar questions