If sin θ − cos θ = 0 (0°≤θ≤90°) and sec θ + cosec θ=x, then find x.
Answers
Answered by
1
Answer:
Trigonometric equations
Step-by-step explanation:
sin Ф + cos Ф = \sqrt{2}
2
cos Ф
\frac{1}{\sqrt{2} }
2
1
sin Ф + \frac{1}{\sqrt{2} }
2
1
cos Ф = cos Ф
sin\frac{\pi }{4}
4
π
sin Ф + cos \frac{\pi }{4}
4
π
cos Ф = cos Ф
cos ( \frac{\pi }{4}
4
π
- Ф) = cos Ф
( \frac{\pi }{4}
4
π
- Ф) = Ф
Answered by
16
Step-by-step explanation:
sinA - cosA = 0
=> sinA = cosA
=> sinA = sin( 90 - A )
=> A = 90 - A
=> A + A = 90
=> 2A = 90°
=> A = 45°
Now ,
x = sec A + cosec A
= sec 45° + cosec 45°
= √2 + √2
= 2√2
if it helps you
Mark as brainlest answer
Similar questions