Math, asked by nandanamstvm003, 2 months ago

If sinθ-cosθ=1/2,
then find the value of
1/sinθ+ cosθ​​

Answers

Answered by ItzDinu
8

\Huge\bf\maltese{\underline{\green{Answer°᭄}}}\maltese

\implies\large\bf{\underline{\red{VERIFIED✔}}}

sin θ - cos θ =  \frac{1}{2}   \\ On \:  squaring  \: both  \: sides,  \\  (sin θ - cos θ \ {)}^{2}   = ( \frac{1}{2}  {)}^{2} \\  \sin^{2} θ + co {s}^{2} θ - 2sin \: θ \cosθ =  \frac{1}{4}  \\ 1 - 2sin \: θ \: cos \: θ =  \frac{1}{4}  \\ 2sin \: θ \: cos \: θ = 1 -  \frac{1}{4} =  \frac{3}{4} \\ (sin θ + cosθ {)}^{2} = si {n}^{2}  θ + co {s}^{2} θ + 2sinθ\:  cosθ \\ = 1 + 2sin θcos θ  \\ = 1 +  \frac{3}{4}  = \frac{7}{4}   \\ sin θ + cos θ = √( \frac{7}{4} ) = √ \frac{7}{4}

 \boxed{I \:Hope\: it's \:Helpful}

Similar questions