If sin θ + cos θ = √2 cos(90° - θ ) , find cot θ
Answers
Answered by
3
sin θ + cos θ = √2 cos(90° - θ )
sin θ + cos θ = √2 sin θ
cos θ = √2 sin θ- sin θ
cos θ= (√2-1) sin θ
cos θ/ sin θ= (√2-1)
cot θ= (√2-1).
sin θ + cos θ = √2 sin θ
cos θ = √2 sin θ- sin θ
cos θ= (√2-1) sin θ
cos θ/ sin θ= (√2-1)
cot θ= (√2-1).
Answered by
6
Hi ,
Here I'm using A instead of theta
sin A + cosA = √2 cos ( 90° - A )
******************************************
cos ( 90° - A ) = sin A
******************************************
sinA + cosA = √2 sinA
divide each term with sin A , we get
sinA / sinA + cosA/sinA = √2sinA/sinA
1 + cotA = √2
cotA = √2 - 1
I hope this helps you.
:)
Here I'm using A instead of theta
sin A + cosA = √2 cos ( 90° - A )
******************************************
cos ( 90° - A ) = sin A
******************************************
sinA + cosA = √2 sinA
divide each term with sin A , we get
sinA / sinA + cosA/sinA = √2sinA/sinA
1 + cotA = √2
cotA = √2 - 1
I hope this helps you.
:)
Similar questions