If sin θ + cos θ = √2 cos(90° - θ ) , find cot θ?
Answers
Answered by
5
Hey there! Thanks for the question.
sin θ + cos θ = √2 cos(90° - θ )
sin θ + cos θ = √2 sin θ
cos θ = √2 sin θ- sin θ
cos θ= (√2-1) sin θ
cos θ/ sin θ= (√2-1)
cot θ= (√2-1).
sin θ + cos θ = √2 cos(90° - θ )
sin θ + cos θ = √2 sin θ
cos θ = √2 sin θ- sin θ
cos θ= (√2-1) sin θ
cos θ/ sin θ= (√2-1)
cot θ= (√2-1).
Answered by
9
Hi !
Actually there are more than 1 method , to solve this question , I'm using the simpler one ,
Given,
sin θ + cos θ = √2 cos(90° - θ )
But , we know that ,
cos(90° - θ ) = sin θ ( complementary angles)
So,
sin θ + cos θ = √2 sin θ
Taking sin θ to RHS,
cos θ = √2 sin θ- sin θ
Taking sin θ common ,
cos θ = sin θ(√2-1)
cos θ/ sin θ= (√2-1)
But , we know that :-
cos θ/ sin θ = cot θ
Hence,
cot θ= (√2-1).
Actually there are more than 1 method , to solve this question , I'm using the simpler one ,
Given,
sin θ + cos θ = √2 cos(90° - θ )
But , we know that ,
cos(90° - θ ) = sin θ ( complementary angles)
So,
sin θ + cos θ = √2 sin θ
Taking sin θ to RHS,
cos θ = √2 sin θ- sin θ
Taking sin θ common ,
cos θ = sin θ(√2-1)
cos θ/ sin θ= (√2-1)
But , we know that :-
cos θ/ sin θ = cot θ
Hence,
cot θ= (√2-1).
Similar questions
Social Sciences,
8 months ago
Computer Science,
8 months ago
English,
8 months ago
English,
1 year ago
Chemistry,
1 year ago
Math,
1 year ago