Math, asked by IIMrVelvetII, 1 day ago

If sinθ + cosθ = √2 cosθ, (θ ≠ 90°) then the value of tanθ is?​

Answers

Answered by mathdude500
9

\large\underline{\sf{Given- }}

\rm \: sin\theta  + cos\theta  =  \sqrt{2} cos\theta  \\

\large\underline{\sf{To\:Find - }}

\rm \: tan\theta  \\

\large\underline{\sf{Solution-}}

Given that,

\rm \: sin\theta  + cos\theta  =  \sqrt{2} cos\theta  \\

can be further rewritten as

\rm \: sin\theta  =  \sqrt{2} cos\theta  - cos\theta  \\

\rm \: sin\theta  = ( \sqrt{2}   -1) cos\theta  \\

can be further rewritten as

\rm \: \dfrac{sin\theta }{cos\theta }  =  \sqrt{2}  - 1

We know that,

\boxed{\sf{  \: \:  \: tanx \:  =  \:  \frac{sinx}{cosx} \:  \: }} \\

So, using this, we get

\rm\implies \:tan\theta  =  \sqrt{2} - 1 \\

Hence,

\rm\implies \: \: \boxed{\sf{  \: \:  \: tan\theta  =  \sqrt{2} - 1  \:  \: }} \: \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by alkabomble8
1

Answer:

this is your answer

Step-by-step explanation:

this your answer please mark me brainliest and like

Attachments:
Similar questions