If sin θ + cos θ = √2, then evaluate: tan θ + cot θ
Answers
Answered by
8
Answer:
If sin θ + cos θ = √2, then evaluate: tan θ + cot θ
Step-by-step explanation:
sin θ + cos θ = √2
(sin θ + cos θ)2 = (√2)2
sin2θ + cos2θ + 2 sin θ cos θ = 2
1 + 2 sin θ cos θ = 2
sin θ cos θ = 1/2 ... (i)
We know that, sin2θ + cos2θ = 1 ... (ii)
Dividing (ii) by (i) we get
tan θ + cot θ = 2
Answered by
0
Answer:
Squaring first equatio
Squaring first equatiosin^2(a)+cos^2(a) +2sin( a) cos( a)=2
Squaring first equatiosin^2(a)+cos^2(a) +2sin( a) cos( a)=21+2sin(a)cos(a)=2
Squaring first equatiosin^2(a)+cos^2(a) +2sin( a) cos( a)=21+2sin(a)cos(a)=22sin(a)cos(a)=1
Squaring first equatiosin^2(a)+cos^2(a) +2sin( a) cos( a)=21+2sin(a)cos(a)=22sin(a)cos(a)=1sin(a)cos(a)=1/2
Squaring first equatiosin^2(a)+cos^2(a) +2sin( a) cos( a)=21+2sin(a)cos(a)=22sin(a)cos(a)=1sin(a)cos(a)=1/2tan a+cot a=sin a/cos a +cos a/sin a
Squaring first equatiosin^2(a)+cos^2(a) +2sin( a) cos( a)=21+2sin(a)cos(a)=22sin(a)cos(a)=1sin(a)cos(a)=1/2tan a+cot a=sin a/cos a +cos a/sin a=sin ^2 a +cos ^2 a/sin a cos a
Squaring first equatiosin^2(a)+cos^2(a) +2sin( a) cos( a)=21+2sin(a)cos(a)=22sin(a)cos(a)=1sin(a)cos(a)=1/2tan a+cot a=sin a/cos a +cos a/sin a=sin ^2 a +cos ^2 a/sin a cos a=1/(1/2)
Squaring first equatiosin^2(a)+cos^2(a) +2sin( a) cos( a)=21+2sin(a)cos(a)=22sin(a)cos(a)=1sin(a)cos(a)=1/2tan a+cot a=sin a/cos a +cos a/sin a=sin ^2 a +cos ^2 a/sin a cos a=1/(1/2)=2
Similar questions