If sinθ + cosθ = √2cosθ, (θ ≠ 90o) then the value of tanθ is
Answers
Answered by
3
If sinθ + cosθ = √2cosθ then the value of tanθ is √2 − 1
Step-by-step explanation:
sinθ + cosθ = √2cosθ
Squaring both sides
sin²θ + cos²θ + 2sinθcosθ= 2cos²θ
using sin²θ + cos²θ = 1 & Sin2θ = 2sinθcosθ
=> 1 + Sin2θ = 2cos²θ
=> Sin2θ = 2cos²θ -1
using Cos2θ = 2cos²θ -1
=> Sin2θ = Cos2θ
=> Sin2θ/Cos2θ = 1
=> Tan2θ = 1
now using
Tan2θ = 2Tanθ/(1 - Tan²θ)
=> 1 = 2Tanθ/(1 - Tan²θ)
=> 1 - Tan²θ = 2Tanθ
=> Tan²θ + 2Tanθ - 1 = 0
=> Tanθ = (-2 ± √(4 + 4) )/2
=> Tanθ = -1 ± √2
hence Tanθ = √2 − 1 ( from the given option)
please do mark as brainliest if it has helped you..
Similar questions