Math, asked by hamsavalli03, 2 months ago

If sinθ-cosθ=√2cosθ,then show that sinθ+cosθ=√sinθ​

Answers

Answered by akritithapliyal718
0

Answer:

i will give you the ans later

Answered by Satyatejareddy
0

Answer:

Given:- sinθ+cosθ=  

2

​  

cosθ

To prove:- cosθ+sinθ=  

2

​  

sinθ

Proof:-

sinθ+cosθ=  

2

​  

cosθ

Squaring both sides, we get

sin  

2

θ+cos  

2

θ+2sinθcosθ=2cos  

2

θ

⇒sin  

2

θ−cos  

2

θ+2sinθcosθ=0

Subtracting 2sin  

2

θ both sides, we have

−sin  

2

θ−cos  

2

θ+2sinθcosθ=−2sin  

2

θ

sin  

2

θ+cos  

2

θ−2sinθcosθ=2sin  

2

θ

(cosθ−sinθ)  

2

=2sin  

2

θ

⇒cosθ−sinθ=  

2

​  

sinθ

Hence proved.

Step-by-step explanation:

Similar questions