If sinθ-cosθ=√2cosθ,then show that sinθ+cosθ=√sinθ
Answers
Answered by
0
Answer:
i will give you the ans later
Answered by
0
Answer:
Given:- sinθ+cosθ=
2
cosθ
To prove:- cosθ+sinθ=
2
sinθ
Proof:-
sinθ+cosθ=
2
cosθ
Squaring both sides, we get
sin
2
θ+cos
2
θ+2sinθcosθ=2cos
2
θ
⇒sin
2
θ−cos
2
θ+2sinθcosθ=0
Subtracting 2sin
2
θ both sides, we have
−sin
2
θ−cos
2
θ+2sinθcosθ=−2sin
2
θ
sin
2
θ+cos
2
θ−2sinθcosθ=2sin
2
θ
(cosθ−sinθ)
2
=2sin
2
θ
⇒cosθ−sinθ=
2
sinθ
Hence proved.
Step-by-step explanation:
Similar questions