Math, asked by Anonymous, 1 year ago

If (Sin θ + Cos θ) = √3, then find the Value of (Tan θ + Cot θ)

I need it Urgently!​

Answers

Answered by Anonymous
107

AnswEr :

  • (Sin θ + Cos θ) = √3
  • Value of (Tan θ + Cot θ)

Let's Head to the Question Now :

\Longrightarrow \large \sf{\sin( \theta)  +  \cos(\theta)  =  \sqrt{3} }

⠀⠀⠀⠀⋆ Squaring Both Sides

\Longrightarrow \large \sf{(\sin( \theta)  +  \cos(\theta))^{2}   =  (\sqrt{3})^{2}  }

\Longrightarrow \large \sf{\sin( \theta)^{2}   +  \cos(\theta)^{2} + 2\sin( \theta)\cos(\theta)  = 3}

⠀⠀⠀⠀⋆ (Sin²θ + Cos²θ) = 1

\Longrightarrow \large \sf{1 + 2\sin( \theta)\cos(\theta)  = 3}

\Longrightarrow \large \sf{2\sin( \theta)\cos(\theta)  = 3 - 1}

\Longrightarrow \large \sf{ \cancel2\sin( \theta)\cos(\theta)  =  \cancel2}

\Longrightarrow \large \sf{\sin( \theta)\cos(\theta)  = 1}

⠀⠀⠀⠀⋆ Dividing Both term by Cos²θ

\Longrightarrow \large \sf{ \dfrac{\sin( \theta) \cancel{\cos(\theta)}}{  \cancel{\cos^{2} ( \theta)} }  =  \dfrac{1}{ \cos^{2} ( \theta) } }

\Longrightarrow \large \sf{ \dfrac{ \sin( \theta) }{ \cos( \theta) } =  \dfrac{1}{ \cos^{2} ( \theta) }  }

⠀⠀⠀⠀⋆ Sinθ / Cosθ = Tanθ

⠀⠀⠀⠀⋆ 1 / Cos²θ = Sec²θ

\Longrightarrow \large \sf \tan( \theta)  =  \sec^{2} ( \theta)

⠀⠀⠀⠀⋆ Sec²θ = (1 + Tan²θ)

\Longrightarrow \large \sf \tan( \theta)  =   1 + \tan^{2} ( \theta)

\Longrightarrow \large \sf 1  = \dfrac{1 + \tan^{2}( \theta)}{\tan( \theta)}

\Longrightarrow \large \sf \dfrac{1}{\tan( \theta)} +  \cancel\dfrac{ \tan^{2}( \theta)}{\tan( \theta)} = 1

\Longrightarrow \large \sf \dfrac{1}{\tan( \theta)} +\tan( \theta)= 1

\Longrightarrow \large \sf  \cot( \theta) +\tan( \theta)= 1

\Longrightarrow   \boxed{\large \sf  \tan( \theta) + \cot( \theta) = 1}

Hence, Value of ( Tan θ + Cot θ ) is 1.

Answered by Anonymous
9

Answer:

\large\bold\red{1}

Step-by-step explanation:

Given:

  •  \sin( \theta)  +  \cos( \theta)  =  \sqrt{3}\:\:\:\:\:......(i)

To find :

  •  \tan( \theta)  +  \cot( \theta)

Squaring both sides of Equation (i),

we get,

 =  >  {( \sin \theta +  \cos\theta)  }^{2}  =  {( \sqrt{3} )}^{2}

But,

we know that,

 \large\bold{{(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}}

Therefore,

we get,

 =  >  { \sin }^{2}  \theta +  { \cos}^{2} \theta + 2 \sin \theta \cos \theta = 3

But,

we know the identity,

 \large\bold{{ \sin}^{2} x +  { \cos }^{2} x = 1}

Therefore,

we get,

 =  > 1 + 2 \sin \theta \cos \theta = 3 \\  \\  =  >  2 \sin \theta \cos \theta = 3 - 1 \\  \\  =  > 2 \sin \theta \cos \theta = 2 \\  \\  =  > \sin \theta \cos \theta =  \frac{2}{2}  \\  \\  =  >  \sin \theta \cos \theta = 1

Now,

dividing both sides by \bold{ { \cos }^{2}\theta},

we get,

  =  >  \frac{ \sin \theta \cos \theta}{{ \cos }^{2}\theta}  =  \frac{1}{{ \cos }^{2}\theta}  \\  \\  =  >  \frac{ \sin( \theta) }{ \cos( \theta ) }  =  \frac{1}{ { \cos }^{2}  \theta}

But,

we know that,

\large\bold{ \frac{  \sin(x) }{ \cos(x) }  =  \tan(x)} \\\\  and  \\\\   \large\bold{\frac{1}{ { \cos }^{2}x }  =  { \sec }^{2} x}

Therefore,

we get,

 =  >  \tan\theta   =  { \sec}^{2}  \theta

But,

we know the identity,

\large\bold{ { \sec }^{2} x = 1 +  { \tan }^{2} x}

Therfore,

we get,

 =  >  \tan( \theta )   = 1 +  { \tan }^{2}  \theta  \\  \\  =  >  \frac{1 +  { \tan }^{2} \theta  }{ \tan( \theta ) }  = 1 \\  \\  =  >  \frac{1}{ \tan \theta}  +  \frac{ { \tan }^{2} \theta}{ \tan \theta  }  = 1

But,

we know that,

\large\bold{ \frac{1}{ \tan(x) }  =  \cot(x) }

Therefore,

we get,

 =  >  \tan \theta   +  \cot\theta  = 1

Hence,

\large\bold{1} is the required Answer.

Similar questions