Math, asked by tamanagarg68, 3 months ago

if sin∅+cos∅=√3 then prove that tan∅+cot∅=1

Answers

Answered by Anonymous
10

Answer:

Question:

Given, Sinθ + Cosθ = √3

Prove that, Tanθ + Cotθ = 1

Solution:

Sinθ + Cosθ = √3

Now Do Squaring on both sides,

(Sinθ + Cosθ)² = (√3)²

Sin²θ + Cos²θ + 2SinθCosθ = 3

1 + 2SinθCosθ = 3

2SinθCosθ = 3 - 1

2SinθCosθ = 2

SinθCosθ = 2/2

SinθCosθ = 1.......(1)

Tanθ + Cotθ = 1

{ \sf{ \frac{sinθ}{cosθ }  +  \frac{cosθ}{sinθ} }} \\

{ \sf{ \frac{ {sin}^{2} θ +  {cos}^{2}θ }{sinθcosθ} }} \\

{ \sf{ \frac{1}{sinθcosθ} }} \\

From equation (1) :

{ \sf{ \frac{1}{1}  = 1}} \\

Hence proved

Answered by llSᴡᴇᴇᴛHᴏɴᴇʏll
7

Question : -

Given, Sinθ + Cosθ = √3

Prove that, Tanθ + Cotθ = 1

Solution : -

Sinθ + Cosθ = √3

Now Do Squaring on both sides,

(Sinθ + Cosθ)² = (√3)²

Sin²θ + Cos²θ + 2SinθCosθ = 3

1 + 2SinθCosθ = 3

2SinθCosθ = 3 - 1

2SinθCosθ = 2

SinθCosθ = 2/2

SinθCosθ = 1... (1)

Tanθ + Cotθ = 1

\begin{gathered}{ \sf{ \frac{sinθ}{cosθ } + \frac{cosθ}{sinθ} }} \\ \end{gathered} </p><p>cosθ</p><p>sinθ</p><p>	</p><p> + </p><p>sinθ</p><p>cosθ

</p><p>\begin{gathered}{ \sf{ \frac{ {sin}^{2} θ + {cos}^{2}θ }{sinθcosθ} }} \\ \end{gathered} </p><p>sinθcosθ</p><p>sin </p><p>2</p><p> θ+cos </p><p>2</p><p> θ

</p><p>\begin{gathered}{ \sf{ \frac{1}{sinθcosθ} }} \\ \end{gathered} </p><p>sinθcosθ</p><p>1

From equation (1) :

\begin{gathered}{ \sf{ \frac{1}{1} = 1}} \\ \end{gathered} </p><p>1</p><p>1</p><p>	</p><p> =1

Hence proved.

 \\  \\

Hope it will help you dear!!!

Thank you!!!

⛄ ɴᴀᴢᴜ ❤

Similar questions