if sin∅+cos∅=√3 then prove that tan∅+cot∅=1
Answers
Answered by
10
Answer:
Question:
Given, Sinθ + Cosθ = √3
Prove that, Tanθ + Cotθ = 1
Solution:
Sinθ + Cosθ = √3
Now Do Squaring on both sides,
(Sinθ + Cosθ)² = (√3)²
Sin²θ + Cos²θ + 2SinθCosθ = 3
1 + 2SinθCosθ = 3
2SinθCosθ = 3 - 1
2SinθCosθ = 2
SinθCosθ = 2/2
SinθCosθ = 1.......(1)
Tanθ + Cotθ = 1
From equation (1) :
Hence proved
Answered by
7
Question : -
Given, Sinθ + Cosθ = √3
Prove that, Tanθ + Cotθ = 1
Solution : -
Sinθ + Cosθ = √3
Now Do Squaring on both sides,
(Sinθ + Cosθ)² = (√3)²
Sin²θ + Cos²θ + 2SinθCosθ = 3
1 + 2SinθCosθ = 3
2SinθCosθ = 3 - 1
2SinθCosθ = 2
SinθCosθ = 2/2
SinθCosθ = 1... (1)
Tanθ + Cotθ = 1
From equation (1) :
Hence proved.
Hope it will help you dear!!!
Thank you!!!
⛄ ɴᴀᴢᴜ ❤
Similar questions