Math, asked by akshayapulavarthi35, 7 months ago

If sinθ+cosθ=a and tanθ+cotθ=b , then b(a2−1)=​

Answers

Answered by manchalanageshreddy
2

Answer:

...............................

Attachments:
Answered by Anonymous
28

Answer:

 \huge{ \bf{ \underline{ \red{Given}}}}

Sinθ+cosθ=a, tanθ+cotθ=b

Find:- b(a²-1)

Solution:-

Sinθ+Cosθ = a ........ (1)

Tanθ+Cotθ =b .......... (2)

From equation (2)...

{ \boxed{ \sf{tanθ =  \frac{sinθ}{cosθ} }}}

{ \boxed{ \sf{cotθ=  \frac{cosθ}{sinθ} }}}

Tanθ+cotθ= b

 { \sf\frac{sinθ}{cosθ}  +  \frac{cosθ}{sinθ} = b }

{ \sf \frac{ {sinθ}^{2} +  {cosθ}^{2}  }{sinθcosθ}  = b}

{ \boxed{ \therefore{ \sf{ {sinθ}^{2} +  {cosθ}^{2} = 1  }}}}

{ \sf \frac{1}{sinθcosθ}  = b}

{ \sf{sinθcos θ=  \frac{1}{b} ........(3)}}

Take equation (1) and do squaring on both sides.

{ \sf{( {sinθ + cosθ) }^{2}  =  {a}^{2} }}

 { \sf{sinθ}^{2} +  {cosθ}^{2}  + 2sinθcos θ=  {a}^{2}  }.......(4)

We know that

{ \boxed{ \sf{ {sinθ}^{2}  +  {cosθ}^{2} = 1 }}}

And, from equation (3)

{  \boxed{ \sf{sinθcosθ =  \frac{1}{b} }}}

Substitute these values in equation (4)

{ \sf{1 + 2( \frac{1}{b} ) =  {a}^{2} }}

{ \sf{2( \frac{1}{b} ) =  {a}^{2}  - 1}}

{ \sf{ \frac{2}{b}  =  {a}^{2}  - 1}}

{ \sf{2 = b( {a}^{2}  - 1)}}

{ \therefore{ \sf{b( {a}^{2}  - 1) = 2}}}

Similar questions