if Sinθ + Cosθ = a, then what is the value of (Secθ - Cosecθ) = _______?
Answers
Answer:
L.H.S.
=(sinθ+secθ)²+(cosθ+cosecθ)²
=sin²θ+2sinθsecθ+sec²θ+cos²θ+2cosθcosecθ+cosec²θ
=sin²θ+cos²θ+2(sinθsecθ+cosθcosecθ)+sec²θ+cosec²θ
=1+2(sinθ/cosθ+cosθ/sinθ)+(1/cos²θ+1/sin²θ)
=1+2(sin²θ+cos²θ)/sinθcosθ+(sin²θ+cos²θ)/sin²θcos²θ
=1+2/sinθcosθ+1/sin²θcos²θ
=1+2secθcosecθ+sec²θcosec²θ
R.H.S.
=(1+secθcosecθ)²
=1²+2×1×(secθcosecθ)+(secθcosecθ)²
=1+2secθcosecθ+sec²θcosec²θ
∴, L.H.S.=R.H.S. (Proved)
Answer:
Answer
Let's consider the side of the plot as 3x, 5x and 7x.
So the sum of all these sides would be 300 m.
Now we need to do this equation to find the value of 'x' ⇒ 3x+5x+7x=3003x+5x+7x=300
Let's solve your equation step-by-step
3x+5x+7x=3003x+5x+7x=300
Step 1: Simplify both sides of the equation.
3x+5x+7x=3003x+5x+7x=300
(Combine Like Terms)
(3x+5x+7x)=300(3x+5x+7x)=300
15x=30015x=300
Step 2: Divide both sides by 15.
\frac{15x}{15} =\frac{300}{15}
15
15x
=
15
300
x= 20x=20
Now the sides of the triangle would be ⇒
Side A ⇒ 3×20 = 60 m
Side B ⇒ 5×20 = 100 m
Side C ⇒ 7×20 = 140 m
According to Heron Law we find area with this formula ⇒ \sqrt{s(s-a)(s-b)(s-c)}
s(s−a)(s−b)(s−c)
Over here 's' is the half of the perimeter which is 300 here. So the value of p would be 150.
\sqrt{150(150-60)(150-100)(150-140)}
150(150−60)(150−100)(150−140)
\sqrt{150(90)(50)(10)}
150(90)(50)(10)
\sqrt{150(45000)}
150(45000)
\sqrt{6750000}
6750000
1500\sqrt{3}m^{3}1500
3
m
3
∴ The area would be 1500√3m³.
\rule{300}{1}