Math, asked by tejasc555, 9 months ago

If sinθ=cosθ,find the value of 2tanθ+cos²θ.​

Answers

Answered by ksonakshi70
2

Answer:

 \sin( \alpha )  =  \cos( \alpha )  \\ hence \:  \\ 2 \tan( \alpha )  +  { \cos( \alpha ) }^{2}  = 2 \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  +  { \cos( \alpha ) }^{2}  \\ 2 \frac{ \cos( \alpha ) }{ \cos( \alpha ) }  +  { \cos( \alpha ) }^{2}  \\  = 2 +  { \cos( \alpha ) }^{2}

Answered by Anonymous
2

\bold{\huge{\underline{\underline{\rm{ Given :}}}}}

sin \: \theta =  \cos\theta

\bold{\huge{\underline{\underline{\rm{ To\:Find :}}}}}

The value of

2tan\theta +  {cos}^{2} \theta

\huge{\underline{\underline{\red{Solution→}}}}

 = 2tan\theta +  {cos}^{2} \theta \:

We know that -

  • {tan\theta} =  \frac{sin\theta}{cos \: \theta}

 =  2 \times  \frac{sin \:\theta }{cos \: \theta}  +  {cos}^{2} \theta

But

sin \: \theta = cos \: \theta

(Given)

 =   2 \times  \frac{cos \:\theta }{cos \: \theta}  +  {cos}^{2} \theta

 = 2 +  {cos}^{2} \theta

\rule{200}{1}

Mark as Brainliest !! ✨✨

Similar questions