Math, asked by Jogi11, 11 months ago

If (sin θ + cos θ)/( sinθ - cos θ) = 3/2, then the value of
tan θ =
with explanation

Answers

Answered by Tomboyish44
10

Answer:

tanθ = 5.

Step-by-step explanation:

ATQ,

\Longrightarrow \sf \dfrac{sin\theta+cos\theta}{sin\theta-cos\theta} = \dfrac{3}{2}

On cross-multiplying we get,

\Longrightarrow \sf 2(sin\theta+cos\theta) = 3(sin\theta-cos\theta)

\Longrightarrow \sf 2sin\theta+2cos\theta=3sin\theta-3cos\theta

\Longrightarrow \sf 2sin\theta-3sin\theta=-3cos\theta-2cos\theta

\Longrightarrow \sf -sin\theta=-5cos\theta

Cancelling the negative sign we get,

\Longrightarrow \sf \ sin\theta=5cos\theta

Transposing cosθ to other side of the equation we get,

\Longrightarrow \sf \dfrac{sin\theta}{cos\theta}=5

\sf We \ know \ that \ \dfrac{sin\theta}{cos\theta}=tan\theta

\Longrightarrow \sf tan\theta = 5

The value of tanθ = 5.

-----------------------------------------------------

Cross-checking the answer:

\sf ATQ, \ \sf \dfrac{sin\theta+cos\theta}{sin\theta-cos\theta} = \dfrac{3}{2}

\sf LHS = \dfrac{sin\theta+cos\theta}{sin\theta-cos\theta}

Dividing the numerator and denominator by cosθ we get,

\sf LHS = \dfrac{\frac{sin\theta}{cos\theta}+\frac{cos\theta}{cos\theta}}{\frac{sin\theta}{cos\theta}-\frac{cos\theta}{cos\theta}}

\sf LHS = \dfrac{tan\theta+1}{tan\theta-1}

Substituting the value of tanθ above we get,

\sf LHS = \dfrac{5+1}{5-1}

\sf LHS = \dfrac{6}{4}

\sf LHS = \dfrac{3}{2}

\sf LHS = RHS

Hence the answer is correct.

Answered by Anonymous
5

Step-by-step explanation:

Given:

\huge{\sf {\frac{sinθ+cosθ}{sinθ-cosθ}}} = \huge{\sf {\frac{3}{2}}}

To Find:

  • Value of tanθ

Solution: Doing cross multiplication

2(sinθ + cosθ) = 3( sinθ cosθ)

2sinθ + 2cosθ = 3sinθ 3cosθ

2cosθ + 3cosθ = 3sinθ 2sinθ ..( Transport similar terms from RHS to LHS or LHS to RHS )

5cosθ = sinθ

5 = \</strong><strong>h</strong><strong>u</strong><strong>g</strong><strong>e{\sf {\frac{</strong><strong>sinθ</strong><strong>}{</strong><strong>cosθ</strong><strong>}}}

Since, \huge{\sf {\frac{sinθ}{cosθ}}} = tanθ

5 = tanθ

Hence, The value of tanθ will be 5

Similar questions