Math, asked by priankadutta85, 8 months ago

If sin + cosec = 2, find the value of sin^2 + cosec^2 .​

Answers

Answered by Anonymous
3

Question:-

 \rm \: if \:  \sin( \theta)  +  \csc( \theta )  = 2

 \rm \: find \: the \: value \: of \:  \sin {}^{2} ( \theta)  \:  +  \csc( \theta)

Solution:-

Take

 \rm \: \sin( \theta)  +  \csc( \theta )  = 2

Now squaring on both side , we get

 \rm \:  \{\sin( \theta)  +  \csc( \theta )  \} {}^{2}  =( 2) {}^{2}

By using this identity

 \rm(a + b) {}^{2}  =  {a}^{2}  +  {b}^{2} +  2ab

We get

 \rm \:  \sin  {}^{2} ( \theta)  +  \csc {}^{2} ( \theta)  + 2 \times  \sin( \theta)  \times  \csc( \theta)  = 4

Trigonometry identities

 \rm \csc( \theta)  =  \frac{1}{ \sin( \theta) }

We get

\rm \:  \sin  {}^{2} ( \theta)  +  \csc {}^{2} ( \theta)  + 2 \times  \sin( \theta)  \times     \frac{1}{ \sin( \theta) }    = 4

\rm \:  \sin  {}^{2} ( \theta)  +  \csc {}^{2} ( \theta)  + 2  = 4

\rm \:  \sin  {}^{2} ( \theta)  +  \csc {}^{2} ( \theta)    = 4 - 2

\rm \:  \sin  {}^{2} ( \theta)  +  \csc {}^{2} ( \theta)    = 2

Answer:-

\rm \:  \sin  {}^{2} ( \theta)  +  \csc {}^{2} ( \theta)    = 2

Answered by Anonymous
4

sin^2 + cosec^2 . is 2

hope it helps u

<marquee scrollamount=1300> FOLLOW ME♥️♥️ </marquee>

Similar questions