If sinϴ + cosecϴ = 2, then find the value of sin2ϴ + cosec2ϴ
Answers
Answered by
3
Answer:
We have,
(sin θ + cosec θ) = 2
squaring both sides, we get
(sin θ + cosec θ)^2 = 2^2 ,{(a+b)^2=a^2+b^2+2ab)}
sin2θ + cosec2θ + 2×sin θ×cosec θ = 4
sin2θ + cosec2θ + 2×sin θ×1sin θ = 4
sin2θ + cosec2θ + 2 = 4
sin2θ + cosec2θ = 4 − 2
sin2θ + cosec2θ = 2
Answered by
0
Answer:
sin2θ.cosec2θ
=sin2θ×1sin2θ [∴cosecθ=1sinθ]
=1
Similar questions