Math, asked by Goludev, 1 year ago

If sin + cosec = 2, then the value of sin2016 + cosec2016, is -
(1) 1
(2) 2016
(3) 2
(4) 4032

Answers

Answered by CarlynBronk
26

Solution:

sin + cosec = 2,

if you replace [] by 90 degree then,

Sin[90°] + Cosec [90°]=1+1=2

So, sin 2016[90°] + cosec 2016[90°]=1+1=2

As 90 * 2016= odd multiple of 90° = 1

Answered by parmesanchilliwack
58

Answer:

(3) 2

Step-by-step explanation:

Here, the given equation,

sin\theta + cosec \theta = 2

sin \theta + \frac{1}{sin \theta}=2   ( Because, cosec A = 1/sin A )

\frac{sin^2 \theta + 1}{sin \theta }=2

sin^2 \theta + 1 = 2 sin \theta

Let, sin \theta = x,

x^2+1=2x

x^2-2x+1=0

(x-1)^2=0

x-1=0

x=1

\implies sin \theta = 1

\implies cosec \theta = \frac{1}{sin \theta}=1

Hence,

sin^{2016} \theta + cosec^{2016} \theta

=(1)^{2016}+(1)^{2016}=1+1=2

Similar questions