Math, asked by imposter69, 1 month ago

if sin inverse x +sin inverse y +sin inverse z = pi the prove that x^2-y^2-z^2+2yzsqrt(1-x^2) =0​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

  \sin^{ - 1} (x)  +  \sin^{ - 1} (y)  +  \sin^{ - 1} (z)  = \pi \\

   \implies \sin^{ - 1} (x)   = \pi -  \sin^{ - 1} (y)   -   \sin^{ - 1} (z)   \\

   \implies \sin^{ - 1} (x)   =  \frac{\pi}{2} -  \sin^{ - 1} (y) +  \frac{\pi}{2}    -   \sin^{ - 1} (z)   \\

   \implies \sin^{ - 1} (x)   =   \cos^{ - 1} (y) +  \cos^{ - 1} (z)   \\

   \implies  \cos \{\sin^{ - 1} (x) \}   =  \cos \{  \cos^{ - 1} (y) +  \cos^{ - 1} (z)  \}  \\

   \implies  \cos \{\cos^{ - 1} ( \sqrt{1 -  {x}^{2} } ) \}   =  \cos \{  \cos^{ - 1} (y)  \} \cos \{ \cos^{ - 1} (z)  \}  -  \sin \{ \cos^{ -1 } (y)  \}\sin \{ \cos^{ - 1} (z)  \}  \\

   \implies \sqrt{1 -  {x}^{2} }   =yz  -  \sin \{ \sin^{ -1 } ( \sqrt{1 -  {y}^{2} } )  \}\sin \{ \sin^{ - 1} (  \sqrt{1 - z^{2} } )  \}  \\

   \implies \sqrt{1 -  {x}^{2} }   =yz  - \sqrt{1 -  {y}^{2} } . \sqrt{1 - z^{2} }   \\

   \implies \sqrt{1 -  {y}^{2} } . \sqrt{1 - z^{2} } =  yz -  \sqrt{1 -  {x}^{2} }      \\

   \implies( \sqrt{1 -  {y}^{2} } . \sqrt{1 - z^{2} } )^{2} =  (yz -  \sqrt{1 -  {x}^{2} }  )^{2}     \\

   \implies(1 -  {y}^{2})  .(1 - z^{2} )=  y^{2} z^{2}  + 1 -  {x}^{2}  - 2yz \sqrt{1 -  {x}^{2} }      \\

   \implies1 -  {z}^{2}  -  {y}^{2} +  {y}^{2} {z}^{2}  =  y^{2} z^{2}  + 1 -  {x}^{2}  - 2yz \sqrt{1 -  {x}^{2} }      \\

   \implies -  {z}^{2}  -  {y}^{2}  =   -  {x}^{2}  - 2yz \sqrt{1 -  {x}^{2} }      \\

   \implies  {x}^{2} -  {z}^{2}  -  {y}^{2}  =     - 2yz \sqrt{1 -  {x}^{2} }      \\

   \implies  {x}^{2} -  {z}^{2}  -  {y}^{2}   + 2yz \sqrt{1 -  {x}^{2} }   = 0    \\

Hence, proved

Similar questions