If sinθ = m and cos θ = n, then what is m²+n² equal to?
Answers
Answered by
0
Step-by-step explanation:
Let,
sinθ=
m
2
+n
2
m
2
−n
2
or, cosecθ=
m
2
−n
2
m
2
+n
2
.
We have,
cotθ=
cosec
2
θ−1
or, cotθ=
(
m
2
−n
2
m
2
+n
2
)
2
−1
or, cotθ=
(
m
2
−n
2
2mn
)
2
or, tanθ=
2mn
m
2
−n
2
Answered by
0
Answer:
sinθ=
m
2
+n
2
m
sin
2
θ+cos
2
θ=1
m
2
+n
2
m
2
−1=−cos
2
θ
−cos
2
θ=
m
2
+n
2
m
2
−m
2
−n
2
cos
2
θ=
m
2
+n
2
n
2
cosθ=
m
2
+n
2
n
msinθ+ncosθ
m(
m
2
+n
2
m
)+n(
m
2
+n
2
n
)
m
2
+n
2
m
2
+n
2
=
m
2
+n
2
LHS=RHS
Similar questions