Math, asked by yashsh123456789, 1 year ago

If Sin θ = m/n, find the value of tan θ + 4 / 4 cot θ +1

Answers

Answered by Anonymous
1
Heya !!

Here's your answer !!!

sin∅ = m/n

∴ cos∅ = √1 - sin²∅ = √1 - m²/n² = √(n² - m²)/n² = √[n² - m²]/n

∴ tan∅ = sin∅/cos∅ = m/√(n²- m²)
cot ∅ = 1/tan∅ = √(n²-m²)/m

∴ (tan∅ + 4)/(4cot∅ + 1)

= [m/√(n²-m²)+4]/[4√(n²-m²)/m+1]

= [{m+4√(n²-m²)}]/(√(n²-m²)]/[{4√(n²-m²)+m}/m]

= [{(m+4/(n²-m²)}]/√(n²-m²)×m/{m+4/(n²-m²)

= m/√(n²-m²)

GLAD HELP YOU.
It helps you,
thank you ☻
@vaibhav246
Similar questions