If Sin θ = m/n, find the value of tan θ + 4 / 4 cot θ +1
Answers
Answered by
1
Heya !!
Here's your answer !!!
sin∅ = m/n
∴ cos∅ = √1 - sin²∅ = √1 - m²/n² = √(n² - m²)/n² = √[n² - m²]/n
∴ tan∅ = sin∅/cos∅ = m/√(n²- m²)
cot ∅ = 1/tan∅ = √(n²-m²)/m
∴ (tan∅ + 4)/(4cot∅ + 1)
= [m/√(n²-m²)+4]/[4√(n²-m²)/m+1]
= [{m+4√(n²-m²)}]/(√(n²-m²)]/[{4√(n²-m²)+m}/m]
= [{(m+4/(n²-m²)}]/√(n²-m²)×m/{m+4/(n²-m²)
= m/√(n²-m²)
GLAD HELP YOU.
It helps you,
thank you ☻
@vaibhav246
Here's your answer !!!
sin∅ = m/n
∴ cos∅ = √1 - sin²∅ = √1 - m²/n² = √(n² - m²)/n² = √[n² - m²]/n
∴ tan∅ = sin∅/cos∅ = m/√(n²- m²)
cot ∅ = 1/tan∅ = √(n²-m²)/m
∴ (tan∅ + 4)/(4cot∅ + 1)
= [m/√(n²-m²)+4]/[4√(n²-m²)/m+1]
= [{m+4√(n²-m²)}]/(√(n²-m²)]/[{4√(n²-m²)+m}/m]
= [{(m+4/(n²-m²)}]/√(n²-m²)×m/{m+4/(n²-m²)
= m/√(n²-m²)
GLAD HELP YOU.
It helps you,
thank you ☻
@vaibhav246
Similar questions