Math, asked by mohitsingh35, 1 month ago

if sin O =3/5 find , tan O​

Answers

Answered by laxmiverma20069
0

Answer:

sin O=3/5

sinO=P/H

so base =√H²+P²

B=√(5)²+(3)²

B=√25+9

B=√34

so tan O=P/B

=3/√34

is correct answer

。◕‿◕。

Answered by Anonymous
4

Given :-

{sin\theta} = \dfrac{3}{5}

To find :-

{tan\theta}

To know :-

{sin\theta} = \dfrac{opposite}{Hypotenuse}

{tan\theta} = \dfrac{opposite}{adjacent}

Solution:-

We know only opposite side and Hypotenuse

From Pythagoras theorem,

AB² + BC² = AC²

AB² +(3)² = (5)²

AB² + 9 = 25

AB² = 25-9

AB² = 16

AB² =(4)²

AB = 4

Now,

{tan\theta} = \dfrac{opposite}{adjacent}

adjacent side = 4

opposite side = 3

{tan\theta} = \dfrac{opposite}{adjacent}

{tan\theta} = \dfrac{3}{4}

___________________

Know more:-

Trigon metric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

csc²θ - cot²θ = 1

Trigometric relations

sinθ = 1/cscθ

cosθ = 1 /secθ

tanθ = 1/cotθ

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

Trigonmetric ratios

sinθ = opp/hyp

cosθ = adj/hyp

tanθ = opp/adj

cotθ = adj/opp

cscθ = hyp/opp

secθ = hyp/adj

Attachments:
Similar questions