If sin o + sin^2
o=1, then evaluate cos^2 + cos^4Q
Answers
Answered by
8
Answer:-
(Theta is taken as "A").
Given:
Sin A + Sin² A = 1 -- equation (1)
→ Sin A = 1 - Sin² A
We know that,
Sin² A + Cos² A = 1
→ Cos² A = 1 - Sin² A.
Hence,
→ Sin A = Cos² A
We have to find: Cos² A + Cos⁴ A
→ Cos² A + (Cos²)² A
Putting the value of Cos² A we get,
→ Sin A + Sin² A
As we know,
Sin A + Sin² A = 1.
Hence, the value of Cos² A + Cos⁴ A = 1.
Answered by
5
Answer:
given
sin∅ + sin ²∅ =1
=> sin∅ = 1 - sin²∅
=> sin∅ = cos²∅ ( since, sin²∅ + cos²∅ = 1)
on squaring both sides
sin²∅ = cos⁴∅
=> 1 - cos²∅ = cos⁴∅
=> 1 = cos²∅ + cos⁴∅
or,
cos²∅ + cos⁴∅ = 1.
hence proved
Step-by-step explanation:
Similar questions