if sin phi, sin theta, cos phi are in G.P, and cos 2theta = kcos^2 (pi/4 + phi) , the value of k/8
Answers
Given :-
sin Ø , sin θ , cos Ø are the G.P.
cos² θ = k cos² [( π/4) + Ø].
To find :-
The value of k/8.
Solution :-
Given that
sin Ø , sin θ , cos Ø are the G.P.
We know that
If a, b, c are in the GP then b² = ac
So,
sin² θ = sin 2Ø × cos Ø
On multiplying with 2 both sides then
=> 2 sin² θ = 2 sin Ø × cos Ø
=> 2 sin² θ = sin 2Ø
Since, sin 2A = 2 sin A cos A
=> 2 sin² θ = sin 2Ø
=> 2( 1- cos² θ) = sin 2Ø
Since, sin² A + cos² A = 1
=> 2 - 2 cos² θ = sin 2Ø
=> 1 + 1 - 2 cos² θ = sin 2Ø
=> 1+ (1 - 2 cos² θ) = sin 2Ø
=> 1 -(2 cos² θ -1) = sin 2Ø
=> 1 - cos 2θ = sin 2Ø
Since, cos 2A = 2 cos² A -1
=> 1 - cos 2θ = - cos ( π/2 + 2Ø)
=> - cos 2θ = 1 - cos ( π/2 + 2Ø)
=> cos 2θ = -1 +cos ( π/2 + 2Ø)
=> cos 2θ = cos [( π/2) + 2Ø]+1
=> cos 2θ = cos 2[( π/4) + Ø]+1
=> cos 2θ =2 cos² [( π/4)+ Ø]-1+1
since, cos 2A = 2 cos² A -1
where , A = [(π/4)+Ø]
=> cos 2θ = 2 cos² [( π/4)+ Ø]
Given that
cos 2θ = k cos² [( π/4)+ Ø]
on comparing them
we have , k = 2
Now, The value of k/8 = 2/8 = 1/4
Answer :-
The value of k/8 = 1/4
Used formulae:-
→ If a, b, c are in the GP then b² = ac
→ sin² A + cos² A = 1
→ cos 2A = 2 cos² A -1
→ sin 2A = 2 sin A cos A
Step-by-step explanation:
Given :-
sin Ø , sin θ , cos Ø are the G.P.
cos² θ = k cos² [( π/4) + Ø].
To find :-
The value of k/8.
Solution :-
Given that
sin Ø , sin θ , cos Ø are the G.P.
We know that
If a, b, c are in the GP then b² = ac
So,
sin² θ = sin 2Ø × cos Ø
On multiplying with 2 both sides then
=> 2 sin² θ = 2 sin Ø × cos Ø
=> 2 sin² θ = sin 2Ø
Since, sin 2A = 2 sin A cos A
=> 2 sin² θ = sin 2Ø
=> 2( 1- cos² θ) = sin 2Ø
Since, sin² A + cos² A = 1
=> 2 - 2 cos² θ = sin 2Ø
=> 1 + 1 - 2 cos² θ = sin 2Ø
=> 1+ (1 - 2 cos² θ) = sin 2Ø
=> 1 -(2 cos² θ -1) = sin 2Ø
=> 1 - cos 2θ = sin 2Ø
Since, cos 2A = 2 cos² A -1
=> 1 - cos 2θ = - cos ( π/2 + 2Ø)
=> - cos 2θ = 1 - cos ( π/2 + 2Ø)
=> cos 2θ = -1 +cos ( π/2 + 2Ø)
=> cos 2θ = cos [( π/2) + 2Ø]+1
=> cos 2θ = cos 2[( π/4) + Ø]+1
=> cos 2θ =2 cos² [( π/4)+ Ø]-1+1
since, cos 2A = 2 cos² A -1
where , A = [(π/4)+Ø]
=> cos 2θ = 2 cos² [( π/4)+ Ø]
Given that
cos 2θ = k cos² [( π/4)+ Ø]
on comparing them
we have , k = 2
Now, The value of k/8 = 2/8 = 1/4
Answer :-
The value of k/8 = 1/4
Used formulae:-
→ If a, b, c are in the GP then b² = ac
→ sin² A + cos² A = 1
→ cos 2A = 2 cos² A -1
→ sin 2A = 2 sin A cos A