Math, asked by nasimfahad06, 2 months ago

if sinα + sinβ = 2
then find the value of
cos²α + cos²β​

Attachments:

Answers

Answered by amansharma264
9

EXPLANATION.

⇒ sinα + sinβ = 2.

As we know that,

If both are equal then,

⇒ sinα = 2.

⇒ sinβ = 2.

Only if,

⇒ sinα = 90°.

⇒ sinβ = 90°.

⇒ sin(90°) + sin(90°).

⇒ 1 + 1 = 2.

To find value of,

⇒ cos²α + cos²β.

Put the value of α = β = 90° in equation, we get.

⇒ cos²(90°) + cos²(90°).

⇒ 0.

                                                                                                                   

MORE INFORMATION.

Fundamental trigonometric identities.

(1) = sin²∅ + cos²∅ = 1.

(2) = 1 + tan²∅ = sec²∅.

(3) = 1 + cot²∅ = cosec²∅.

The greatest & least value of the expression [ a sin∅ + b cos∅].

Greatest value = √a² + b².

Least value = -√a² + b².

Answered by Anonymous
71

__________________

{\large{\bold{\rm{\underline{Given \; that}}}}}

{\sf{\bigstar \: sin \alpha \: + sin \beta \: = 2}}

{\large{\bold{\rm{\underline{To \; find}}}}}

{\sf{\bigstar \: cos^{2} \alpha \: + cos^{2} \beta}}

{\large{\bold{\rm{\underline{Solution}}}}}

{\sf{\bigstar \: cos^{2} \alpha \: + cos^{2} \beta \: = 0}}

__________________

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

~ As it's given that {\red{sin \alpha \: + sin \beta \: = 2}}. Henceforth,

{\sf{:\implies \: sin \alpha \: = 2}}

{\sf{:\implies \: sin \beta \: = 2}}

~ That's why,

{\sf{:\implies \: sin \alpha \: = 90 \degree}}

{\sf{:\implies \: sin \beta \: = 90 \degree}}

~ Putting the values,

{\sf{:\implies \: sin(90 \degree) + \: sin(90 \degree)}}

{\sf{:\implies \: 1 + 1}}

{\sf{:\implies \: 2}}

~ As we know that we have to find {\red{cos^{2} \alpha \: + cos^{2} \beta}}

~ Let's put the values,

{\sf{\implies \: cos^{2}(90 \degree) \: + cos^{2} (90 \degree)}}

{\sf{\implies \: 0}}

__________________

Similar questions