Math, asked by iloveyouxd98, 6 months ago

if sinα + sinβ = 2
then find the value of
cos²α + cos²β​

Attachments:

Answers

Answered by Anonymous
4

{\large{\bold{\rm{\underline{Given \; that}}}}}

{\sf{\bigstar \: sin \alpha \: + sin \beta \: = 2}}

{\large{\bold{\rm{\underline{To \; find}}}}}

{\sf{\bigstar \: cos^{2} \alpha \: + cos^{2} \beta}}

{\large{\bold{\rm{\underline{Solution}}}}}

{\sf{\bigstar \: cos^{2} \alpha \: + cos^{2} \beta \: = 0}}

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

As it's given that.

</p><p>{\red{sin \alpha \: + sin \beta \: = 2}}

Henceforth,

{\sf{:\implies \: sin \alpha \: = 2}}

{\sf{:\implies \: sin \beta \: = 2}}

~ That's why,

{\sf{:\implies \: sin \alpha \: = 90 \degree}}

{\sf{:\implies \: sin \beta \: = 90 \degree}}

~Putting the Values,

{\sf{:\implies \: sin(90 \degree) + \: sin(90 \degree)}}

{\sf{:\implies \: 1 + 1}}

{\sf{:\implies \: 2}}

~As we know that we have to find

{\purple{cos^{2} \alpha \: + cos^{2} \beta}}

Let's Put the values

{\sf{\implies \: cos^{2}(90 \degree) \: + cos^{2} (90 \degree)}}

{\sf{\implies \: 0}}

Similar questions