Math, asked by hgfyduhbhj46461, 2 months ago

If sin α sin β – cos α cos β + 1 =0, then prove that cot α tan β = -1.

Answers

Answered by Sweetoldsoul
2

Answer:

Step-by-step explanation:

(sin α sin β – cos α cos β) + 1 =0

  • taking the brackets to the RHS

1 = -(sin α sin β – cos α cos β)

  • distributing the - sign

1 = - sin α sin β + cos α cos β

cos 0 = cos (α + β)

α + β = 0

α = - β

  • Now solving cot α tan β

cot α = 1 / tan α

  • and α = - β

cot α = 1/ tan (-β)

cot α = -1/ tan β

(-1/ tan β ) × tan β

  • cancelling the tan  β

= - 1

LHS = RHS

Hence, proved

Similar questions