If sin α sin β – cos α cos β + 1 =0, then prove that cot α tan β = -1.
Answers
Answered by
2
Answer:
Step-by-step explanation:
(sin α sin β – cos α cos β) + 1 =0
- taking the brackets to the RHS
1 = -(sin α sin β – cos α cos β)
- distributing the - sign
1 = - sin α sin β + cos α cos β
cos 0 = cos (α + β)
α + β = 0
α = - β
- Now solving cot α tan β
cot α = 1 / tan α
- and α = - β
cot α = 1/ tan (-β)
cot α = -1/ tan β
(-1/ tan β ) × tan β
- cancelling the tan β
= - 1
LHS = RHS
Hence, proved
Similar questions