If sin(sin inverse 1/5+cos inverse x) = 1, find x
Answers
Answered by
62
Hey there !!!!
sin(sin⁻¹1/5+cos⁻¹x)=1
sin⁻¹1/5+cos⁻¹x=sin⁻¹1
But sinπ/2=1
⇒sin⁻¹1=π/2
So,
sin⁻¹1/5+cos⁻¹x=π/2--------Equation 1
In inverse trigonometry
sin⁻¹t+cos⁻¹t=π/2
So, equation 1 follows the above identity
So, sin⁻¹ 1/5+cos⁻¹x=π/2
Therefore value of x will be 1/5.
Hope this helped you .....
sin(sin⁻¹1/5+cos⁻¹x)=1
sin⁻¹1/5+cos⁻¹x=sin⁻¹1
But sinπ/2=1
⇒sin⁻¹1=π/2
So,
sin⁻¹1/5+cos⁻¹x=π/2--------Equation 1
In inverse trigonometry
sin⁻¹t+cos⁻¹t=π/2
So, equation 1 follows the above identity
So, sin⁻¹ 1/5+cos⁻¹x=π/2
Therefore value of x will be 1/5.
Hope this helped you .....
Answered by
22
sin( sin-¹ 1/5 + cos-¹ x) = 1
sin-¹ 1/5 + cos-¹ x = sin-¹(1)
cos-¹ x = sin-¹ 1 - sin-¹ 1/5
Let sin-¹ 1 = P => 1 = sinP
cosP = 0 { becoz sin x = 1 , cosx = 0
sin-¹ 1/5 = Q => 1/5 = sinQ
cosQ = 2√6/5
cos( P - Q) = cosP.cosQ + sinP. sinQ
= 0 × 2√6/5 + 1 × 1/5
= 1/5
cos( P - Q) = 1/5
( P - Q) = cos-¹( 1/5)
sin-¹ 1 - sin-¹ 1/5 = cos-¹( 1/5) , put this in equation (1)
cos-¹ x = cos-¹( 1/5)
x = 1/5 ( answer )
sin-¹ 1/5 + cos-¹ x = sin-¹(1)
cos-¹ x = sin-¹ 1 - sin-¹ 1/5
Let sin-¹ 1 = P => 1 = sinP
cosP = 0 { becoz sin x = 1 , cosx = 0
sin-¹ 1/5 = Q => 1/5 = sinQ
cosQ = 2√6/5
cos( P - Q) = cosP.cosQ + sinP. sinQ
= 0 × 2√6/5 + 1 × 1/5
= 1/5
cos( P - Q) = 1/5
( P - Q) = cos-¹( 1/5)
sin-¹ 1 - sin-¹ 1/5 = cos-¹( 1/5) , put this in equation (1)
cos-¹ x = cos-¹( 1/5)
x = 1/5 ( answer )
Similar questions