If sin θ + sin2 θ = 1, prove that cos12 θ + 3 cos10 θ + 3cos8 θ + cos6 θ + 2 cos4 θ + 2cos2 θ – 2 = 1
Answers
Answered by
0
value of cos12θ+3cos10θ+3cos8θ+cos6θ(cos2θ+1)3−2
cos
12
θ
+
3
cos
10
θ
+
3
cos
8
θ
+
cos
6
θ
(
cos
2
θ
+
1
)
3
−
2
?
sinθ=1−sin2θ=cos2θ
sin
θ
=
1
−
sin
2
θ
=
cos
2
θ
(cos2θ+1)3=cos6θ+3cos4θ+3cos2θ+1
(
cos
2
θ
+
1
)
3
=
cos
6
θ
+
3
cos
4
θ
+
3
cos
2
θ
+
1
N=cos12θ+3cos10θ+3cos8θ+cos6θ(cos2θ+1)3−2
N
=
cos
12
θ
+
3
cos
10
θ
+
3
cos
8
θ
+
cos
6
θ
(
cos
2
θ
+
1
)
3
−
2
N=2cos6θ(cos2θ+1)3−cos6θ−2
N
=
2
cos
6
θ
(
cos
2
θ
+
1
)
3
−
cos
6
θ
−
2
N=2sin3θ(1+sinθ)3−sin3θ−2
N
=
2
sin
3
θ
(
1
+
sin
θ
)
3
−
sin
3
θ
−
2
N=2(sinθ+sin2θ)3−sin3θ−2
N
=
2
(
sin
θ
+
sin
2
θ
)
3
−
sin
3
θ
−
2
N=−sin3θ
N
=
−
sin
3
θ
sin2θ+sin3θ=sinθ
sin
2
θ
+
sin
3
θ
=
sin
θ
(1−sinθ)+sin3θ=sinθ
(
1
−
sin
θ
)
+
sin
3
θ
=
sin
θ
N=1−2sinθ
N
=
1
−
2
sin
θ
sinθ=−1±1+4‾‾‾‾‾√2
sin
θ
=
−
1
±
1
+
4
2
2sinθ=5‾√−1
2
sin
θ
=
5
−
1
N=2−5‾√
N
=
2
−
5
cos
12
θ
+
3
cos
10
θ
+
3
cos
8
θ
+
cos
6
θ
(
cos
2
θ
+
1
)
3
−
2
?
sinθ=1−sin2θ=cos2θ
sin
θ
=
1
−
sin
2
θ
=
cos
2
θ
(cos2θ+1)3=cos6θ+3cos4θ+3cos2θ+1
(
cos
2
θ
+
1
)
3
=
cos
6
θ
+
3
cos
4
θ
+
3
cos
2
θ
+
1
N=cos12θ+3cos10θ+3cos8θ+cos6θ(cos2θ+1)3−2
N
=
cos
12
θ
+
3
cos
10
θ
+
3
cos
8
θ
+
cos
6
θ
(
cos
2
θ
+
1
)
3
−
2
N=2cos6θ(cos2θ+1)3−cos6θ−2
N
=
2
cos
6
θ
(
cos
2
θ
+
1
)
3
−
cos
6
θ
−
2
N=2sin3θ(1+sinθ)3−sin3θ−2
N
=
2
sin
3
θ
(
1
+
sin
θ
)
3
−
sin
3
θ
−
2
N=2(sinθ+sin2θ)3−sin3θ−2
N
=
2
(
sin
θ
+
sin
2
θ
)
3
−
sin
3
θ
−
2
N=−sin3θ
N
=
−
sin
3
θ
sin2θ+sin3θ=sinθ
sin
2
θ
+
sin
3
θ
=
sin
θ
(1−sinθ)+sin3θ=sinθ
(
1
−
sin
θ
)
+
sin
3
θ
=
sin
θ
N=1−2sinθ
N
=
1
−
2
sin
θ
sinθ=−1±1+4‾‾‾‾‾√2
sin
θ
=
−
1
±
1
+
4
2
2sinθ=5‾√−1
2
sin
θ
=
5
−
1
N=2−5‾√
N
=
2
−
5
Similar questions