Math, asked by drishtigola523, 1 year ago

If sin θ + sin2 θ = 1, prove that cos12 θ + 3 cos10 θ + 3cos8 θ + cos6 θ + 2 cos4 θ + 2cos2 θ – 2 = 1

Answers

Answered by dilpreetpg143
0
value of cos12θ+3cos10θ+3cos8θ+cos6θ(cos2θ+1)3−2
cos
12

θ
+
3
cos
10

θ
+
3
cos
8

θ
+
cos
6

θ
(
cos
2

θ
+
1
)
3

2
?
sinθ=1−sin2θ=cos2θ
sin

θ
=
1

sin
2

θ
=
cos
2

θ

(cos2θ+1)3=cos6θ+3cos4θ+3cos2θ+1
(
cos
2

θ
+
1
)
3
=
cos
6

θ
+
3
cos
4

θ
+
3
cos
2

θ
+
1

N=cos12θ+3cos10θ+3cos8θ+cos6θ(cos2θ+1)3−2
N
=
cos
12

θ
+
3
cos
10

θ
+
3
cos
8

θ
+
cos
6

θ
(
cos
2

θ
+
1
)
3

2

N=2cos6θ(cos2θ+1)3−cos6θ−2
N
=
2
cos
6

θ
(
cos
2

θ
+
1
)
3

cos
6

θ

2

N=2sin3θ(1+sinθ)3−sin3θ−2
N
=
2
sin
3

θ
(
1
+
sin

θ
)
3

sin
3

θ

2

N=2(sinθ+sin2θ)3−sin3θ−2
N
=
2
(
sin

θ
+
sin
2

θ
)
3

sin
3

θ

2

N=−sin3θ
N
=

sin
3

θ

sin2θ+sin3θ=sinθ
sin
2

θ
+
sin
3

θ
=
sin

θ
(1−sinθ)+sin3θ=sinθ
(
1

sin

θ
)
+
sin
3

θ
=
sin

θ
N=1−2sinθ
N
=
1

2
sin

θ

sinθ=−1±1+4‾‾‾‾‾√2
sin

θ
=

1
±
1
+
4
2
2sinθ=5‾√−1
2
sin

θ
=
5

1
N=2−5‾√
N
=
2

5
Similar questions