if sinθ + sin²θ=1, Prove that cos²θ + cos⁴θ = 1
Answers
Answered by
2
Answer:
Step-by-step explanation:
LHS :
sin theta = 1 - sin^2 theta ( sin^2 theta + cos^2 theta = 1 )
sin theta = cos^2 theta
cos^2 theta + ( sin theta ) ^2
cos^2 theta + sin^2 theta = 1
1 = 1
LHS = RHS
hence proved
Answered by
1
→ sinθ + sin²θ = 1
To prove :-
→ cos²θ +cos⁴θ = 1
Proof:-
→ sinθ + sin²θ = 1
→ sinθ = 1 - sin²θ
→ sinθ = cos²θ [ 1- sin²θ= cos²θ]
Squaring on both side
→ sin²θ = cos⁴θ
→ 1 - cos²θ = cos⁴θ [ sin²θ= 1- cos²θ]
→ 1 = cos⁴θ + cos²θ
→ cos⁴θ + cos²θ = 1
Similar questions