If sin θ + sin² θ = 1, then cos² θ + cos⁴ θ =
– 1
1
0
None of These
Answers
Answered by
0
Answer:
sin (theta) +sin ^2 (theta) =1
sin (theta) +1-cos ^2 (theta) =1
sin (theta) -cos ^2 (theta) =0
sin (theta) =cos ^2 (theta)
square both sides
sin^2 (theta) =cos ^4 (theta)
1-cos ^2 (theta)= cos ^4 (theta)
cos ^4 (theta)+cos ^2 (theta)=1
ANS:1
Answered by
1
★ Given that,
- sin θ + sin² θ = 1
★ To find,
- cos² θ + cos⁴ θ = ?
★ Let,
➡ sin θ + sin² θ = 1 ..... (1)
➡ sin θ = 1 - sin² θ
- 1 - sin² θ = cos² θ
➡ sin θ = cos² θ ..... (2)
★ Now,
➡ cos² θ + cos⁴ θ
➡ cos² θ + (cos² θ)²
- Substitute the value of (2) cos² θ = sin θ
➡ sin θ + (sin θ)²
➡ sin θ + sin² θ = 1
Similar questions