Math, asked by gskhanamanpco, 10 months ago

 If sin θ + sin² θ = 1, then cos² θ + cos⁴ θ =

– 1

1

0

None of These

Answers

Answered by nandikabalan
0

Answer:

sin (theta) +sin ^2 (theta) =1

sin (theta) +1-cos ^2 (theta) =1

sin (theta) -cos ^2 (theta) =0

sin (theta) =cos ^2 (theta)

square both sides

sin^2 (theta) =cos ^4 (theta)

1-cos ^2 (theta)= cos ^4 (theta)

cos ^4 (theta)+cos ^2 (theta)=1

ANS:1

Answered by Anonymous
1

\huge\underline\mathbb{\red S\pink{O}\purple{L} \blue{UT} \orange{I}\green{ON :}}

Given that,

  • sin θ + sin² θ = 1

To find,

  • cos² θ + cos⁴ θ = ?

Let,

➡ sin θ + sin² θ = 1 ..... (1)

➡ sin θ = 1 - sin² θ

  • 1 - sin² θ = cos² θ

➡ sin θ = cos² θ ..... (2)

Now,

➡ cos² θ + cos⁴ θ

➡ cos² θ + (cos² θ)²

  • Substitute the value of (2) cos² θ = sin θ

➡ sin θ + (sin θ)²

➡ sin θ + sin² θ = 1

\underline{\boxed{\bf{\purple{∴ Hence, \:the\:value\:of\:cos²\:θ\:+\:cos⁴\:θ\:=\:1}}}}

<marquee behaviour-move><font color="blue"><h2># PLEASE MARK ME AS BRAINLIEST✌✌✌</ ht></marquee>

Similar questions