If sinΘ + sin2Θ = 1, then cos2Θ + cos4Θ = 1 ?
Answers
Answered by
0
Answer:
hey liya,
Step-by-step explanation:
Given : sin θ + sin2 θ = 1 ⇒ sin θ = 1 – sin2 θ Taking LHS = cos2θ + cos4θ = cos2 θ + (cos2 θ)2 = (1– sin2 θ) + (1– sin2 θ)2 …(i) Putting sin θ = 1 – sin2 θ in Eq. (i), we get = sin θ + (sin θ)2 = sin θ + sin2 θ = 1 [Given: sin θ + sin2 θ = 1] = RHS Hence ProvedRead more on Sarthaks.com - https://www.sarthaks.com/930499/if-sin-sin-2-1-then-prove-that-cos-2-1-cos-4-1
Answered by
3
sin θ + sin² θ = 1
⇒ sinθ = 1 – sin² θ
= cos²θ + cos⁴θ
= cos² θ + (cos⁴ θ)²
= (1– sin² θ) + (1– sin² θ)² ....(1)
= sin θ + (sin θ)²
= sin θ + sin² θ
= 1
[Given: sin θ + sin² θ = 1]
Similar questions