If sin¤ +sin²¤=1 then find the value of cos²+cos^4
Answers
Answered by
5
cos2 theta+cos4 theta
=1-sin2 theta+cos2 theta*cos2theta
=sin theta+(1-sin2 theta)(1-sin2 theta)
=sin theta+sin theta*sin theta
=sin theta+sin2 theta
= 1
=1-sin2 theta+cos2 theta*cos2theta
=sin theta+(1-sin2 theta)(1-sin2 theta)
=sin theta+sin theta*sin theta
=sin theta+sin2 theta
= 1
aryan24281:
who are you ardra ?
Answered by
0
Answer:
Given
sinA+sin²A=1
=>sinA+(1-cos²A)=1
[1-cos²A=sin²A]
=>sinA-cos²A=1-1
=>sinA=cos²A
Now
cos²A+cos⁴A
=cos²A+(sinA)²
=cos²A+sin²A
=cos²A+1-cos²A
=1
Similar questions