Math, asked by Missbutterfly, 29 days ago

If sinθ+sin²θ = 1, what is the value of cos²θ+cos⁴ θ? ​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:sin\theta +  {sin}^{2}\theta = 1

can be rewritten as

\rm :\longmapsto\:sin\theta  = 1 -  {sin}^{2}\theta

We know,

\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

So, using this, we get

\rm :\longmapsto\:sin\theta =  {cos}^{2}\theta

On squaring both sides, we get

\rm :\longmapsto\: {(sin\theta)}^{2} =  {( {cos}^{2} \theta)}^{2}

\rm :\longmapsto\: {sin}^{2}\theta =  {cos}^{4}\theta

We know,

\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

So, using this identity, we get

\rm :\longmapsto\: 1 - {cos}^{2}\theta =  {cos}^{4}\theta

\bf\implies \:\boxed{ \tt{ \:  {cos}^{2}\theta +  {cos}^{4}\theta = 1 \:  \: }}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions