Math, asked by jinnamsai123, 1 year ago

if sin square A + cos square B is equals to 1 then find the value of Cos A + B​

Answers

Answered by MrPoizon
2

Answer:

HOPE THIS WILL HELP YOU

PLZ FOLLOW ME PLZ

MARK BRAINLIEST PLZ

\huge{\mathcal{\red{ITZ SWAGAT}}}

Attachments:
Answered by pinquancaro
1

Answer:

\cos (A+B)=\cos 2A                            

Step-by-step explanation:

Given : If \sin^2 A+\cos^2 B=1

To find : The value of \cos (A+B)

Solution :

\sin^2 A+\cos^2 B=1

We know, \sin^2 \theta+\cos^2\theta=1

1-\cos^2 A+\cos^2 B=1

\cos^2 A-\cos^2 B=0

\cos^2 A=\cos^2 B

\cos A=\cos B  ......(1)

Similarly,

\sin^2 A+1-\sin^2 A=1

\sin^2 A-\sin^2 B=0

\sin^2 A=\sin^2 B

\sin A=\sin B  ......(2)

Now, Write the expression as

\cos (A+B)=\cos A\cos B-\sin A\sin B

Substitute the values,

\cos (A+B)=\cos A\cos A-\sin A\sin A

\cos (A+B)=\cos^2 A-\sin^2 A

\cos (A+B)=\cos 2A

Similar questions