Math, asked by ishwarmehra9, 1 year ago

if sin squared theta + 3 cos theta is equal to 2 then find the value of cos cube theta + sec cube theta

Answers

Answered by BEJOICE
31
See the attachment for detail solution
Hope it will help you
Attachments:
Answered by ushmagaur
0

Question: If sin^2\theta +3cos\theta = 2 then find the value of cos^3\theta + sec^3\theta.

Answer:

The value of cos^3\theta + sec^3\theta is 18.

Step-by-step explanation:

It is given that sin^2\theta +3cos\theta = 2.

To find:-

The value of cos^3\theta + sec^3\theta.

Step 1 of 2

Consider the given trigonometric function as follows:

sin^2\theta +3cos\theta = 2 _____ (1)

As we know,

sin^2\theta = 1-cos^2\theta

Then, the equation (1) becomes,

1-cos^2\theta +3cos\theta = 2

1-cos^2\theta +3cos\theta -2=0

cos^2\theta -3cos\theta +1=0

Let x = cos\theta. Then,

x^2-3x+1=0

Here, a=1, b=-3 and c=1

Notice that the equation is quadratic equation.

Solve the quadratic equation as follows:

x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}

x=\frac{-(-3)\pm\sqrt{(-3)^2-4(1)(1)} }{2(1)}

  =\frac{3\pm\sqrt{9-4} }{2}

  =\frac{3\pm\sqrt{5} }{2}

x=\frac{3+\sqrt{5} }{2} and x=\frac{3-\sqrt{5} }{2}

cos\theta =\frac{3+\sqrt{5} }{2} and cos\theta =\frac{3-\sqrt{5} }{2}.

Case1. When cos\theta =\frac{3+\sqrt{5} }{2}. Then,

sec\theta = 1/cos\theta

        = 1/\frac{3+\sqrt{5} }{2}

        = \frac{2}{3+\sqrt{5} }

On rationalising, we get

sec\theta = \frac{2(3-\sqrt{5} )}{(3+\sqrt{5} )(3-\sqrt{5} )}

        = \frac{2(3-\sqrt{5}) }{4}

sec\theta = \frac{3-\sqrt{5} }{2}

Case2. When cos\theta =\frac{3-\sqrt{5} }{2}. Then,

sec\theta = 1/cos\theta

        = 1/\frac{3-\sqrt{5} }{2}

        = \frac{2}{3-\sqrt{5} }

On rationalising, we get

sec\theta = \frac{2(3+\sqrt{5} )}{(3+\sqrt{5} )(3-\sqrt{5} )}

        = \frac{2(3+\sqrt{5}) }{4}

sec\theta = \frac{3+\sqrt{5} }{2}

Step 2 of 2

Find the value of cos^3\theta + sec^3\theta.

Case1. When cos\theta =\frac{3+\sqrt{5} }{2} and sec\theta=\frac{3-\sqrt{5} }{2}.

cos^3\theta + sec^3\theta=\left(\frac{3+\sqrt{5} }{2} \right)^3+\left(\frac{3-\sqrt{5} }{2} \right)^3

                     =\frac{1}{8}[ \left(3+\sqrt{5}  \right)^3+\left(3-\sqrt{5} \right)^3]

                     =\frac{1}{8}[ 27+5\sqrt{5}  +9\sqrt{5}(3+\sqrt{5} ) +27-5\sqrt{5}  -9\sqrt{5}(3-\sqrt{5} )]

                     =\frac{1}{8}[ 54  +90]

                     =\frac{1}{8}\times 144

cos^3\theta + sec^3\theta=18

Case2. When cos\theta =\frac{3-\sqrt{5} }{2} and sec\theta=\frac{3+\sqrt{5} }{2}.

cos^3\theta + sec^3\theta=\left(\frac{3-\sqrt{5} }{2} \right)^3+\left(\frac{3+\sqrt{5} }{2} \right)^3

                     =\frac{1}{8}[ \left(3-\sqrt{5}  \right)^3+\left(3+\sqrt{5} \right)^3]

                     =\frac{1}{8}[ 27-5\sqrt{5}  -9\sqrt{5}(3-\sqrt{5} ) +27+5\sqrt{5}  +9\sqrt{5}(3+\sqrt{5} )]

                     =\frac{1}{8}[ 54  +90]

                     =\frac{1}{8}\times 144

cos^3\theta + sec^3\theta=18

Therefore, the value of cos^3\theta + sec^3\theta is 18.

#SPJ3

Similar questions