if sin teta - cos teta=1/2, then find the value of 1/sin teta + cos teta.
Answers
Answered by
2
Answer of the above question is √7/2.
Answered by
4
Hi Mate!!
Let, theta = x
Sin ( x ) - Cos ( x ) = 1 / 2
Squaring both sides we have
{ Sin ( x ) - Cos ( x ) }²= { 1 / 2 }²
=>
Sin² ( x ) + Cos² ( x ) - 2 Sin ( x ) Cos ( x ) = 1 / 4
=>
1 - 2 Sin ( x ) Cos ( x ) = 1 / 4
1 - ( 1 / 4 ) = 2 Sin ( x ) Cos ( x )
Sin ( x ) Cos ( x ) = 3 / 8
Sin ( x ) + Cos ( x ) / 2 ≥ { Sin ( x ) Cos ( x ) }½
Sin ( x ) + Cos ( x ) / 2 ≥ ( 3 / 8 )½
Sin ( x ) + Cos ( x ) ≥ 2 ( √3 ) / 2√2
Sin ( x ) + Cos ( x ) = √3 / √2
So , 1 / Sin ( x ) + Cos ( x ) = 1 / ( √3 / √2 )
1 / Sin ( x ) + Cos ( x ) = √2 / √3
Have a nice time...
..........................................................................
Formula used is
Sin² ( x ) + Cos² ( x ) = 1
And
A.M ≥ G . M
Let, theta = x
Sin ( x ) - Cos ( x ) = 1 / 2
Squaring both sides we have
{ Sin ( x ) - Cos ( x ) }²= { 1 / 2 }²
=>
Sin² ( x ) + Cos² ( x ) - 2 Sin ( x ) Cos ( x ) = 1 / 4
=>
1 - 2 Sin ( x ) Cos ( x ) = 1 / 4
1 - ( 1 / 4 ) = 2 Sin ( x ) Cos ( x )
Sin ( x ) Cos ( x ) = 3 / 8
Sin ( x ) + Cos ( x ) / 2 ≥ { Sin ( x ) Cos ( x ) }½
Sin ( x ) + Cos ( x ) / 2 ≥ ( 3 / 8 )½
Sin ( x ) + Cos ( x ) ≥ 2 ( √3 ) / 2√2
Sin ( x ) + Cos ( x ) = √3 / √2
So , 1 / Sin ( x ) + Cos ( x ) = 1 / ( √3 / √2 )
1 / Sin ( x ) + Cos ( x ) = √2 / √3
Have a nice time...
..........................................................................
Formula used is
Sin² ( x ) + Cos² ( x ) = 1
And
A.M ≥ G . M
ChirayuC:
tthhhhhhaaaaaannnnnnkkkkkkuuuuuuu
Similar questions