if sin teta+Cos teta=a and tan teta+cot teta=b,then b(a square-1)
Answers
Answered by
3
b=tan theta+cot theta
=sin theta/cos theta+cos theta/sin theta
=sin^2 theta+cos^2 theta/sin theta*cos theta
=1/sin theta*cos theta
a=sin theta+cos theta
b*(a^2-1)=1/sin theta*cos theta(1+2sin theta*cos theta-1)
=2
=sin theta/cos theta+cos theta/sin theta
=sin^2 theta+cos^2 theta/sin theta*cos theta
=1/sin theta*cos theta
a=sin theta+cos theta
b*(a^2-1)=1/sin theta*cos theta(1+2sin theta*cos theta-1)
=2
Answered by
0
tan@+cot@ [(sin@+cos@)^2 -1]
= tan@+cot@ (sin^2@+cos^2@+2sin@cos@ -1)
=cot@+tan@(1+2sin@cos@-1)
=cot@+tan@(2sin@cos@)
convert cot and tan in sin and cos terms
ie. sin@/cos@ + cos@/sin@ (2sin@cos@)
taking l.c.m.
=sin^2@+cos^2@ x(2sin@cos@)
_________________
sin@cos@
cancel sin@cos@
=1(2) = 2
Similar questions