if sin tetha = 3/5,then cot tetha
Answers
✯ Solution :-
Given that ,
■ sinθ = 3/5
We need to find ,
■ cotθ = ?
If we need to find cotθ firstly we need to find cosθ & we should substitute in ,
• cotθ = cosθ/sinθ
Firstly finding cosθ using first trigonometric identity .
sin²θ + cos²θ = 1
Simplifying,
cosθ = ±√1 - sin²θ
Substituting the value of sinθ
➵ cosθ = ±√1 - [ 3/5 ]²
➵ cosθ = √1 - 9/25
➵ cosθ = √ 25 - 9/25
➵ cosθ = √16/25
➵ cosθ = 4/5
Now , finding cotθ
• cotθ = cosθ/sinθ
⇒ cotθ = (4/5)/(3/5)
⇒ cotθ = 4/3
Hence , cotθ = 4/3
Answer :-
Let, Perpendicular = AB = 3k
Hypotenuse = AC = 5k
where, k is any positive integer
So, by Pythagoras theorem,
we can find the third side of a triangle
⇒ (AB)² + (BC)² = (AC)²
⇒ (3k)² + (BC)² = (5k)²
⇒ 9k² + (BC)² = 25k²
⇒ (BC)² = 25k² – 9k²
⇒ (BC)² = 16k²
⇒ BC =√16k²
⇒ BC =±4k
But side BC can’t be negative.
But side BC can’t be negative. So, BC = 4k
Now, we have to find the value of cotθ
We know that,
Base = BC = 4k
Perpendicular = AB = 3k
So,