Math, asked by raunk52, 1 year ago

if Sin \theta =  \frac{3}{5}then find the value of tan \theta

Answers

Answered by Swarnimkumar22
14
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}

if Sin \theta = \frac{3}{5}then find the value of tan \theta



\bold{\underline{Answer-}}


\bold{Your\:answer\:is\:3/4}


\bold{\underline{Explanation-}}

sin \theta \:  =  \frac{3}{5}  \\  \\  \\  \\ tan \theta =  \frac{sin \theta}{cos \theta}  \\  \\  \\  =  \frac{sin \theta}{ \sqrt{1 -  {sin}^{2} \theta } }  \\  \\  \\  =  \frac{ \frac{3}{5} }{ \sqrt{1 -  \frac{9}{25} } }  \\  \\  \\  =  \frac{ \frac{3}{5} }{ \sqrt{ \frac{16}{25} } }  \\  \\  \\  =  \frac{ \frac{3}{5} }{ \frac{4}{5} }  \\  \\  \\ tan \theta =   \frac{3}{4}
Answered by Anonymous
22
Hey there !!


▶ Given :-

 \sin \theta \:  =  \frac{3}{5} .

▶ To find :-

 \tan \theta \: .



▶ Solution :-

We know that :-


  \bf \sf \sin \theta \:  =  \frac{perpendicular}{hypotenuse} .
 \therefore  \sf \sin \theta =  \frac{3}{5}  =  \frac{p}{h} .


Using Pythagoras theorem , find b ,

°•° b² = h² - p² .

=> b² = 5² - 3² .

=> b² = 25 - 9 .

=> b² = 16 .

=> b = √16 .

•°• b = 4 .


 \huge \sf \therefore  \tan \theta =  \frac{p}{b}  =  \boxed{ \pink{ \frac{3}{4} .}}


✔✔ Hence, it is solved ✅✅.



THANKS


#BeBrainly.
Similar questions