Math, asked by Anonymous, 3 months ago

If sin \theta =  \frac{\sqrt{3}}{\sqrt{5}} and cos \theta =  \frac{\sqrt{2}}{\sqrt{5}}
Find cot \theta

Answers

Answered by TrueRider
290

 {\colorbox {aqua} {\boxed {\boxed {\mathbb {\color{red}QUESTION}}}}}

If sin \theta =  \frac{\sqrt{3}}{\sqrt{5}} and cos \theta =  \frac{\sqrt{2}}{\sqrt{5}}

Find cot \theta

 {\colorbox {aqua} {\boxed {\boxed {\mathbb {\color{red}ANSWER}}}}}

 \sf sin\theta=frac{\sqrt{3}}{\sqrt{5}}

 \sf sin\theta=\frac{opposite}{hypotenuse}

 \sf cos\theta=frac{\sqrt{2}}{\sqrt{5}}

 \sf sin\theta=\frac{adjacent}{hypotenuse}

  1.  \sf opposite = \sqrt{3}
  2.  \sf adjacent = \sqrt{2}
  3.  \sf hypotenuse = \sqrt{5}

 \sf cot\theta=\frac{adjacent}{opposite}

{\boxed {\sf\therefore cot\theta=\frac{\sqrt{2}}{\sqrt{3}}}}

 {\colorbox {aqua} {\boxed {\boxed {\mathbb {\color{red}꧁☬༒ɧσ℘ε \:ıt\: ɧεɭ℘ร\: ყσน༒☬꧂}}}}}

Similar questions