Math, asked by payal32367, 7 months ago


If sin theeta+ cos theeta = √3 , then prove that tan 0 + cot 0 = 1.​

Answers

Answered by MysticPetals
4

Given :

 \sin\theta  +  \cos \theta \:  =  \sqrt{3}

To find :

tan 0° + cot 0° = 1

Solution :

 \sin\theta  +  \cos \theta \:  =  \sqrt{3}

Squaring on both the sides ,

 { (\sin \theta  +  \cos\theta ) }^{2}  =  { (\sqrt{3}) }^{2}

 { \sin }^{2} \theta  +  { \cos }^{2} \theta + 2 \sin \theta  \cos \: \theta \:  = 3

1 + 2 \sin \theta \:  \cos \: \theta \:  = 3

 \therefore \:(  { \sin }^{2}  \theta \:  +  { \cos }^{2} \theta \:  = 1)

 \longrightarrow \: 2 \sin \theta \:  \cos  \theta \:  = 2

 =  >  \sin \theta \:  \times  \cos \theta = 1

Since we have solution in sin and cos terms , Let's change over here too so that we can prove easily !

 \frac{ \sin(  \:\theta) }{ \cos( \theta) } +  \frac{ \cos( \theta) }{ \sin( \theta) }   = 1

 = \ \frac{ { \sin \theta }^{2} +  { \cos \theta }^{2}  }{ \sin \theta  \times  \cos \theta }

 =  \frac{1}{1}  = 1

hence \: we \: proved \: that \:  \\  \\  \tan \theta  +  \cot \theta = 1

_______________________

Similar questions