if sin theta = 1/2
show that:-
3 cos theta- 4 cos^2 theta
Answers
Answered by
4
Step-by-step explanation:
ANSWER
3sin θ+4cosθ = 5
Squaring both sides
9sin
2
θ+16cos
2
θ+24sinθcosθ=25
9(1 cos
2
=θ)+16(1−sinθ)+24sinθcosθ=25
9−9cos
2
θ+16−16sin
2
θ+24sinθcosθ=25
- 9 cos
2
θ−16sin
2
θ+24sinθcosθ=25916
9 cos
2
θ+16sin
2
θ−24sinθcosθ=0
(3cosθ4sinθ)
2
=0
3cosθ−4sinθ=0
Alternate Method:
If ax+by=m and ax−by=n
then (a
2
+b
2
)(x
2
+y
2
)=m
2
+n
2
Here
a=sinθ
x = 3, m = 5, and b = cos θ y = 4, n = ?
(sin
2
θ+cos
2
θ)(9+16)(5)
2
+n
2
n
2
= 0, n = 0
3sinθ−4cosθ = 0
Answered by
0
Answer:
0
Step-by-step explanation:
Let theta be ₹.
sin ₹ = 1/2
sin ₹ = sin 30°
₹ = 30°
to prove:-
3cos₹ - 4cos^3₹ = 0
3cos30° - 4cos^3 30° = 0
3(root3/2)-4(root3-2)³=0
0 = 0
Similar questions