If sin theta=1/3 then find the value of(9 cot2 theta+9) is
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given :
sinθ = 1/3
To Find :
9cot(2θ) + 9
=> 9(cot(2θ) + 1)
Formulae :
csc²θ = cot²θ + 1 [From sin²θ + cos²θ = 1]
cscθ = 1/sinθ
tanθ = 1/cotθ
cot(2θ) = 1/tan(2θ)
Tan(2θ) =
Hence cot(2θ) =
We can get tanθ by 1/cotθ.
Procedure :
sinθ = 1/3
sin²θ = 1/9
csc²θ = 9/1 = 9
csc²θ = cot²θ + 1
=> cot²θ = csc²θ - 1
=> cot²θ = 9 - 1
=> cot²θ = 8
Hence tan²θ = 1/8 and tanθ = 1/√8
Hence cot(2θ) =
√8 = 2√2
=>
cot(2θ) => √2 × (63/64)
cot(2θ) + 1 =
9(cot(2θ) + 1)
=>
Thanks !
Similar questions