Math, asked by hiyasehgal2005, 4 months ago

If sin theta=1/3 then find the value of(9 cot2 theta+9) is

Answers

Answered by GeniusYH
1

Answer:

 \frac{567  \sqrt{2} + 576  }{64}

Step-by-step explanation:

Given :

sinθ = 1/3

To Find :

9cot(2θ) + 9

=> 9(cot(2θ) + 1)

Formulae :

csc²θ = cot²θ + 1 [From sin²θ + cos²θ = 1]

cscθ = 1/sinθ

tanθ = 1/cotθ

cot(2θ) = 1/tan(2θ)

Tan(2θ) =

 \frac{2tanθ}{1 - ta {n}^{2}θ }

Hence cot(2θ) =

 \frac{1 - ta {n}^{2}θ } {2tanθ}

We can get tanθ by 1/cotθ.

Procedure :

sinθ = 1/3

sin²θ = 1/9

csc²θ = 9/1 = 9

csc²θ = cot²θ + 1

=> cot²θ = csc²θ - 1

=> cot²θ = 9 - 1

=> cot²θ = 8

Hence tan²θ = 1/8 and tanθ = 1/√8

Hence cot(2θ) =

 \frac{1  - ( \frac{1}{8})^{2}   }{2( \frac{1}{ \sqrt{8} } )}

√8 = 2√2

=>

 \frac{1  - ( \frac{1}{8})^{2}   }{( \frac{1}{ \sqrt{2} } )}

cot(2θ) => √2 × (63/64)

cot(2θ) + 1 =

 \frac{63  \sqrt{2} + 64  }{64}

9(cot(2θ) + 1)

=>

 \frac{567  \sqrt{2} + 576  }{64}

Thanks !

Similar questions