Math, asked by devanandaasha, 9 months ago

if sin theta=1/root 3, then find the value of (tan theta + 1/cos theta)^2 + (tan theta - 1/cos theta)^2

Answers

Answered by Cosmique
11

Given :

\bullet \sf{sin \theta  =  \dfrac{1}{ \sqrt{3} } }

To find :

 \bullet \sf{(tan \theta +  \dfrac{1}{cos \theta})^2 \:  +  \: (tan \theta -  \dfrac{1}{cos \theta} )^2 = ? }

Solution :

\implies\sf{ {  \big(tan \theta +  \dfrac{1}{cos \theta}  \big)}^{2}  +  { \big(tan \theta -  \dfrac{1}{cos \theta} \big) }^{2} }

 \red{putting \: tan \theta =  \dfrac{sin \theta}{cos \theta} }

\implies\sf{ {  \big( \dfrac{sin \theta}{cos \theta}  +  \dfrac{1}{cos \theta}  \big)}^{2}  +  { \big( \dfrac{sin \theta}{cos \theta}  -  \dfrac{1}{cos \theta} \big) }^{2} }

\implies\sf{ {  \big( \dfrac{sin \theta + 1}{cos \theta} \big)}^{2}  +  { \big( \dfrac{sin \theta - 1}{cos \theta}   \big) }^{2} }

\implies\sf{  \dfrac{(sin \theta + 1)^{2} }{ {cos}^{2}  \theta}  +  \dfrac{(sin \theta - 1)^{2}  }{ {cos}^{2} \theta } }

\implies\sf{  \dfrac{(sin \theta + 1)^{2} +  {(sin \theta - 1)}^{2}  }{ {cos}^{2}  \theta} }

\red{using \: algebraic \: identity}

\red{ \star \:  {(a + b)}^{2} =  {a}^{2} +  {b}^{2}  + 2ab \:  \: and  }

\red{ \star \: {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab }

\implies\sf{  \dfrac{(sin^{2}  \theta + 1 + 2sin \theta) +  (sin^{2} \theta  +  1 - 2sin \theta)}{ {cos}^{2}  \theta} }

\implies\sf{  \dfrac{2sin^{2}  \theta + 2 }{ {cos}^{2}  \theta} }

\red{using \: trigonometric \: identity}

\red{ \star \:1 -  {sin}^{2} \theta =  {cos}^{2} \theta   }

\implies\sf{  \dfrac{2sin^{2}  \theta + 2 }{ 1 - {sin}^{2}  \theta} }

\red{putting \: value \: of \: sin \theta}

\implies\sf{  \dfrac{2( \dfrac{1}{ \sqrt{3}} )^{2}  + 2 }{ 1 -   {( \dfrac{1}{ \sqrt{3} } )}^{2} } }

\implies\sf{  \dfrac{2(  \dfrac{1}{3}  ) + 2 }{ 1 -   {( \dfrac{1}{ 3})} } }

\implies\sf{  \dfrac{ \dfrac{2}{3} + 2 }{ 1 -    \dfrac{1}{ 3} } }

\implies\sf{  \dfrac{ \:  \:  \:  \: \dfrac{2 + 6}{3}   \:  \:  \:  \: }{  \dfrac{3 - 1}{ 3} } }

\implies\sf{  \dfrac{ \:  \:  \:   \dfrac{8}{3}   \:  \:  \:  }{  \dfrac{2}{ 3} } }

 \implies \sf{ \dfrac{8}{2} = 4}

therefore,

\red{ \bigstar} \boxed{\sf{ {  \big(tan \theta +  \dfrac{1}{cos \theta}  \big)}^{2}  +  { \big(tan \theta -  \dfrac{1}{cos \theta} \big) }^{2} = 4 } }

Similar questions