Math, asked by nishup213, 1 year ago

if sin theta =11/61 find the values of cos theta using trigonometric identity. Please let me know the whole process

Answers

Answered by vrrunda
49
sin¢=11/61=perpendicular/hypotenuse

so base =√(61)^2-(11)^2 =60


so we know that cos ¢=base /hypotenuse

so we get cos¢=60/61

hope it's helpful to you....
Answered by koyai
4

Answer: cosθ= \frac{60}{61}, when sinθ= \frac{11}{61}

Step-by-step explanation:

Concept: The basic trigonometric identities are sinθ, cosθ and tanθ.

Sinθ and cosθ are related as sin²θ + cos²θ=1.

Now, it is given to us that sinθ=11/61.

Step 1: sinθ=\frac{11}{61}

         ⇒sin²θ=(\frac{11}{61} )^{2}

Step 2: Now putting on the above relation, sin²θ + cos²θ=1, we get,

                         (\frac{11}{61} )^{2} + cos²θ =1

                     ⇒cos²θ = 1 - (\frac{11}{61} )^{2}

                     ⇒cos²θ = \frac{61^{2} - 11^{2}   }{61^{2} }

                   ⇒cos²θ = \frac{(61+11)(61-11)}{61^{2} } (from the formula, (a² - b²)=(a+b)(a-b))

                    ⇒cos²θ = \frac{72*50}{61^{2} }

                    ⇒cos²θ = \frac{3600}{61^{2} } = \frac{60^{2} }{61^{2} }

                    ⇒ cosθ = \frac{60}{61}

Final ans: Using the trigonometric identity sin²θ + cos²θ=1, we get the value of cosθ to be \frac{60}{61}, when sinθ= \frac{11}{61}

Similar questions