Math, asked by jatin832934, 1 month ago

if sin theta = 12/13 find tan theta cos theta cosec theta sec theta cot theta​

Answers

Answered by anilsainitkd
1

Answer:

Trigonometry- The branch of Mathematics which helps in dealing with measure of three sides of a right-angled triangle is called Trigonometry.

Trigonometric Ratios:

sin θ  = Perpendicular/Hypotenuse

cos θ = Base/Hypotenuse

tan θ = Perpendicular/Base

cosec θ = Hypotenuse/Perpendicular

sec θ = Hypotenuse/Base

cot θ = Base/Perpendicular

Also, tan θ = sin θ/cos θ and cot θ = cos θ/sinθ

Given: sin θ = 12/13

To find: cos θ and tan θ

Solution: sin θ = 12/13

In a right-angled triangle, sin θ = 12/13

Perpendicular (P)/ Hypotenuse (H) = 12/13

⇒ Let P = 12k and H = 13k

By using Pythagoras Theorem, H² = P² + B²

(13k)² = (12k)² + B²

169k² = 144k² + B²

B² = 25k²

B = 5k

Now, cos θ =  Base/Hypotenuse

cos θ = 5k/13k

∴ cos θ = 5/13

tan θ = sin θ/cos θ

tan θ = 12/13 × 13/5

∴ tan θ = 12/5

∴ cos θ = 5/13 and tan θ = 12/5

Step-by-step explanation:

Answered by sandy1816
0

Step-by-step explanation:

given

 \sin( \theta)  =  \frac{12}{13}   \\

so

 \cos \theta =   \sqrt{1 -  { \sin}^{2} \theta }  \\  \\  \cos \theta =  \sqrt{1 -  \frac{144}{169} }  \\  \\   = \sqrt{ \frac{25}{169} }   \\  \\  =  \frac{5}{13}

so

 \cosec \theta =  \frac{13}{12}  \\ and \:  \\  \sec \theta =  \frac{13}{5}

And

tan \theta  =  \frac{sin \theta}{cos \theta}  \\ \\  =  \frac{ \frac{12}{13} }{ \frac{5}{13} }  \\ \\  =  \frac{12}{5}  \\  \\ so \:  \:  \:  \: cot \theta =  \frac{1}{tan \theta}  \\  =  \frac{5}{12}

Similar questions