Math, asked by Ajin2491, 1 year ago

if sin theta = 12/13 find the value of sin^2 theta - cos^2 theta /2 sin theta.cos theta * 1/tan^2 theta

Answers

Answered by mysticd
190

Answer:

Value \: of \\</p><p>\frac{(sin^{2}\theta-cos^{2}\theta)}{2sin\theta cos\theta}\times \frac{1}{tan^{2}\theta}\\=\frac{595}{3456}

Step-by-step explanation:

Given ,\\sin\theta = \frac{12}{13}--(1)

cos^{2}\theta = 1-sin^{2}\theta \\=1-\left(\frac{12}{13}\right)^{2}\\=1-\frac{144}{169}\\=\frac{169-144}{169}\\=\frac{25}{169}

cos\theta = \sqrt{\frac{25}{169}}\\=\frac{5}{13}--(2)

 tan\theta = \frac{sin\theta}{cos\theta}\\=\frac{\frac{12}{13}}{\frac{5}{13}}\\=\frac{12}{5}--(3)

Now,Value \: of \\</p><p>\frac{(sin^{2}\theta-cos^{2}\theta)}{2sin\theta cos\theta}\times \frac{1}{tan^{2}\theta}

=\frac{sin^{2}\theta-(1-sin^{2}\theta)}{2sin\theta cos\theta }\times \frac{1}{tan^{2}\theta}

=\frac{(2sin^{2}\theta-1)}{2sin\theta cos\theta}\times \frac{1}{tan^{2}\theta}

=\frac{[2\big(\frac{12}{13}\big)^{2}-1]}{2\times \frac{12}{13}}\times \frac{5}{13}\times \frac{1}{\big(\frac{12}{5}\big)^{2}}

=\frac{2\times \frac{144}{169}-1}{2\times \frac{12}{13}\times \frac{5}{13}}\times \frac{25}{144}

=\frac{\frac{(288-169)}{169}}{\frac{120}{169}}\times \frac{25}{144}

=\frac{119\times 5}{24 \times 144}=\frac{ 595}{3456}</p><p>

•••♪

Answered by shahkavya09
2

Answer:

595/3456

Step-by-step explanation:

See the photo for explaination

Attachments:
Similar questions