Math, asked by Dikanku4500, 1 year ago

if sin theta =12/13,find the value of sin^2theta-cos^2theta/2sin theta cos theta

Answers

Answered by avdesh1
9
This question answer
Attachments:
Answered by tardymanchester
1

Answer:

\frac{\sin^2\theta-\cos^2\theta}{2\sin \theta cos \theta}=\frac{119}{120}

Step-by-step explanation:

Given : If \sin\theta =\frac{12}{13}

To find : The value of \frac{\sin^2\theta-\cos^2\theta}{2\sin \theta cos \theta}

Solution :

\frac{\sin^2\theta-\cos^2\theta}{2\sin \theta cos \theta}

We know, \sin\theta =\frac{12}{13}=\frac{P}{H}

We can find the base by Pythagoras theorem,

B=\sqrt{H^2-P^2}

B=\sqrt{13^2-12^2}

B=\sqrt{169-144}

B=\sqrt{25}

B=5

So, \cos\theta =\frac{B}{H}=\frac{5}{13}

Substitute in the value,

=\frac{(\frac{12}{13})^2-(\frac{5}{13})^2}{2(\frac{12}{13})(\frac{5}{13})}

=\frac{(12^2-5^2)\times (13\times13)}{(13\times 13)(2\times 12\times 5)}

=\frac{144-25}{2\times 12\times 5}

=\frac{119}{120}

Therefore, \frac{\sin^2\theta-\cos^2\theta}{2\sin \theta cos \theta}=\frac{119}{120}

Similar questions